<< Chapter < Page Chapter >> Page >

The mechanism of electromagnetic wave propagation

To see how the symmetry introduced by Maxwell accounts for the existence of combined electric and magnetic waves that propagate through space, imagine a time-varying magnetic field B 0 ( t ) produced by the high-frequency alternating current seen in [link] . We represent B 0 ( t ) in the diagram by one of its field lines. From Faraday’s law, the changing magnetic field through a surface induces a time-varying electric field E 0 ( t ) at the boundary of that surface. The displacement current source for the electric field, like the Faraday’s law source for the magnetic field, produces only closed loops of field lines, because of the mathematical symmetry involved in the equations for the induced electric and induced magnetic fields. A field line representation of E 0 ( t ) is shown. In turn, the changing electric field E 0 ( t ) creates a magnetic field B 1 ( t ) according to the modified Ampère’s law. This changing field induces E 1 ( t ) , which induces B 2 ( t ) , and so on. We then have a self-continuing process that leads to the creation of time-varying electric and magnetic fields in regions farther and farther away from O . This process may be visualized as the propagation of an electromagnetic wave through space.

Figure shows a 3 dimensional diagram. A wire carrying an AC current is along the z axis. A circle labeled B0 goes around the wire. It lies in the xy plane. Another circle, labeled E0 goes through B0. E0 lies in the xz plane. Circle B1 goes through E0 and E1 goes through B1, and so on forming what looks like a chain. Circles B0, B1 and B2 are in the xy plane, with their centres along the x axis. These are interspersed with circles E0, E1 and E2 in the xz plane, whose centers lie on the y axis.
How changing E and B fields propagate through space.

In the next section, we show in more precise mathematical terms how Maxwell’s equations lead to the prediction of electromagnetic waves that can travel through space without a material medium, implying a speed of electromagnetic waves equal to the speed of light.

Prior to Maxwell’s work, experiments had already indicated that light was a wave phenomenon, although the nature of the waves was yet unknown. In 1801, Thomas Young (1773–1829) showed that when a light beam was separated by two narrow slits and then recombined, a pattern made up of bright and dark fringes was formed on a screen. Young explained this behavior by assuming that light was composed of waves that added constructively at some points and destructively at others (see Interference ). Subsequently, Jean Foucault (1819–1868), with measurements of the speed of light in various media, and Augustin Fresnel (1788–1827), with detailed experiments involving interference and diffraction of light, provided further conclusive evidence that light was a wave. So, light was known to be a wave, and Maxwell had predicted the existence of electromagnetic waves that traveled at the speed of light. The conclusion seemed inescapable: Light must be a form of electromagnetic radiation. But Maxwell’s theory showed that other wavelengths and frequencies than those of light were possible for electromagnetic waves. He showed that electromagnetic radiation with the same fundamental properties as visible light should exist at any frequency. It remained for others to test, and confirm, this prediction.

Check Your Understanding When the emf across a capacitor is turned on and the capacitor is allowed to charge, when does the magnetic field induced by the displacement current have the greatest magnitude?

It is greatest immediately after the current is switched on. The displacement current and the magnetic field from it are proportional to the rate of change of electric field between the plates, which is greatest when the plates first begin to charge.

Got questions? Get instant answers now!
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask