<< Chapter < Page | Chapter >> Page > |
The definition of the ampere is based on the force between current-carrying wires. Note that for long, parallel wires separated by 1 meter with each carrying 1 ampere, the force per meter is
Since is exactly by definition, and because the force per meter is exactly This is the basis of the definition of the ampere.
Infinite-length wires are impractical, so in practice, a current balance is constructed with coils of wire separated by a few centimeters. Force is measured to determine current. This also provides us with a method for measuring the coulomb . We measure the charge that flows for a current of one ampere in one second. That is, For both the ampere and the coulomb, the method of measuring force between conductors is the most accurate in practice.
The force per unit length can then be calculated using the known currents in the wires:
The force from the first wire pulls the second wire. The angle between the radius and the x -axis is
The unit vector for this is calculated by
Therefore, the force per unit length from wire one on wire 2 is
The force per unit length from wire 2 on wire 1 is the negative of the previous answer:
Check Your Understanding Two wires, both carrying current out of the page, have a current of magnitude 2.0 mA and 3.0 mA, respectively. The first wire is located at (0.0 cm, 5.0 cm) while the other wire is located at (12.0 cm, 0.0 cm). What is the magnitude of the magnetic force per unit length of the first wire on the second and the second wire on the first?
Both have a force per unit length of
Compare and contrast the electric field of an infinite line of charge and the magnetic field of an infinite line of current.
Is constant in magnitude for points that lie on a magnetic field line?
A magnetic field line gives the direction of the magnetic field at any point in space. The density of magnetic field lines indicates the strength of the magnetic field.
Two long, straight wires are parallel and 25 cm apart. (a) If each wire carries a current of 50 A in the same direction, what is the magnetic force per meter exerted on each wire? (b) Does the force pull the wires together or push them apart? (c) What happens if the currents flow in opposite directions?
Two long, straight wires are parallel and 10 cm apart. One carries a current of 2.0 A, the other a current of 5.0 A. (a) If the two currents flow in opposite directions, what is the magnitude and direction of the force per unit length of one wire on the other? (b) What is the magnitude and direction of the force per unit length if the currents flow in the same direction?
a. away from the other wire; b. toward the other wire
Two long, parallel wires are hung by cords of length 5.0 cm, as shown in the accompanying figure. Each wire has a mass per unit length of 30 g/m, and they carry the same current in opposite directions. What is the current if the cords hang at with respect to the vertical?
A circuit with current I has two long parallel wire sections that carry current in opposite directions. Find magnetic field at a point P near these wires that is a distance a from one wire and b from the other wire as shown in the figure.
into the page
The infinite, straight wire shown in the accompanying figure carries a current The rectangular loop, whose long sides are parallel to the wire, carries a current What are the magnitude and direction of the force on the rectangular loop due to the magnetic field of the wire?
Notification Switch
Would you like to follow the 'University physics volume 2' conversation and receive update notifications?