<< Chapter < Page | Chapter >> Page > |
Check Your Understanding When 1.00 g of ammonia boils at atmospheric pressure and its volume changes from 1.47 to . Its heat of vaporization at this pressure is What is the change in the internal energy of the ammonia when it vaporizes?
View this site to learn about how the first law of thermodynamics. First, pump some heavy species molecules into the chamber. Then, play around by doing work (pushing the wall to the right where the person is located) to see how the internal energy changes (as seen by temperature). Then, look at how heat added changes the internal energy. Finally, you can set a parameter constant such as temperature and see what happens when you do work to keep the temperature constant ( Note: You might see a change in these variables initially if you are moving around quickly in the simulation, but ultimately, this value will return to its equilibrium value).
What does the first law of thermodynamics tell us about the energy of the universe?
Does adding heat to a system always increase its internal energy?
If more work is done on the system than heat added, the internal energy of the system will actually decrease.
A great deal of effort, time, and money has been spent in the quest for a so-called perpetual-motion machine, which is defined as a hypothetical machine that operates or produces useful work indefinitely and/or a hypothetical machine that produces more work or energy than it consumes. Explain, in terms of the first law of thermodynamics, why or why not such a machine is likely to be constructed.
Notification Switch
Would you like to follow the 'University physics volume 2' conversation and receive update notifications?