<< Chapter < Page Chapter >> Page >
  • Describe the Carnot cycle with the roles of all four processes involved
  • Outline the Carnot principle and its implications
  • Demonstrate the equivalence of the Carnot principle and the second law of thermodynamics

In the early 1820s, Sadi Carnot (1786−1832), a French engineer, became interested in improving the efficiencies of practical heat engines. In 1824, his studies led him to propose a hypothetical working cycle with the highest possible efficiency between the same two reservoirs, known now as the Carnot cycle    . An engine operating in this cycle is called a Carnot engine    . The Carnot cycle is of special importance for a variety of reasons. At a practical level, this cycle represents a reversible model for the steam power plant and the refrigerator or heat pump. Yet, it is also very important theoretically, for it plays a major role in the development of another important statement of the second law of thermodynamics. Finally, because only two reservoirs are involved in its operation, it can be used along with the second law of thermodynamics to define an absolute temperature scale that is truly independent of any substance used for temperature measurement.

With an ideal gas as the working substance, the steps of the Carnot cycle, as represented by [link] , are as follows.

  1. Isothermal expansion. The gas is placed in thermal contact with a heat reservoir at a temperature T h . The gas absorbs heat Q h from the heat reservoir and is allowed to expand isothermally, doing work W 1 . Because the internal energy E int of an ideal gas is a function of the temperature only, the change of the internal energy is zero, that is, Δ E int = 0 during this isothermal expansion. With the first law of thermodynamics, Δ E int = Q W , we find that the heat absorbed by the gas is
    Q h = W 1 = n R T h ln V N V M .
    The figure shows four steps of Carnot cycle, namely isothermal expansion, adiabatic expansion, isothermal compression and adiabatic compression.
    The four processes of the Carnot cycle. The working substance is assumed to be an ideal gas whose thermodynamic path MNOP is represented in [link] .
    The first part of the figure shows a graph corresponding to four steps of Carnot cycle. The x-axis is V and y-axis is p. The second part shows a downward arrow Q subscript h at T subscript h which splits into a downward arrow Q subscript c at T subscript c and a right arrow W.
    The total work done by the gas in the Carnot cycle is shown and given by the area enclosed by the loop MNOPM .
  2. Adiabatic expansion . The gas is thermally isolated and allowed to expand further, doing work W 2 . Because this expansion is adiabatic, the temperature of the gas falls—in this case, from T h to T c . From p V γ = constant and the equation of state for an ideal gas, p V = n R T , we have
    T V γ 1 = constant ,

    so that
    T h V N γ 1 = T c V O γ 1 .
  3. Isothermal compression . The gas is placed in thermal contact with a cold reservoir at temperature T c and compressed isothermally. During this process, work W 3 is done on the gas and it gives up heat Q c to the cold reservoir. The reasoning used in step 1 now yields
    Q c = n R T c ln V O V P ,

    where Q c is the heat dumped to the cold reservoir by the gas.
  4. Adiabatic compression . The gas is thermally isolated and returned to its initial state by compression. In this process, work W 4 is done on the gas. Because the compression is adiabatic, the temperature of the gas rises—from T c to T h in this particular case. The reasoning of step 2 now gives
    T c V P γ 1 = T h V M γ 1 .

    The total work done by the gas in the Carnot cycle is given by
    W = W 1 + W 2 W 3 W 4 .

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask