<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the distribution of molecular speeds in an ideal gas
  • Find the average and most probable molecular speeds in an ideal gas

Particles in an ideal gas all travel at relatively high speeds, but they do not travel at the same speed. The rms speed is one kind of average, but many particles move faster and many move slower. The actual distribution of speeds has several interesting implications for other areas of physics, as we will see in later chapters.

The maxwell-boltzmann distribution

The motion of molecules in a gas is random in magnitude and direction for individual molecules, but a gas of many molecules has a predictable distribution of molecular speeds. This predictable distribution of molecular speeds is known as the Maxwell-Boltzmann distribution    , after its originators, who calculated it based on kinetic theory, and it has since been confirmed experimentally ( [link] ).

To understand this figure, we must define a distribution function of molecular speeds, since with a finite number of molecules, the probability that a molecule will have exactly a given speed is 0.

The figure is a graph of probability versus velocity v in meters per second of oxygen gas at 300 kelvin. The graph has a peak probability at a velocity V p of just under 400 meters per second and a root-mean-square probability at a velocity v r m s of about 500 meters per second. The probability is zero at the origin and tends to zero at infinity. The graph is not symmetric, but rather steeper on the left than on the right of the peak.
The Maxwell-Boltzmann distribution of molecular speeds in an ideal gas. The most likely speed v p is less than the rms speed v rms . Although very high speeds are possible, only a tiny fraction of the molecules have speeds that are an order of magnitude greater than v rms .

We define the distribution function f ( v ) by saying that the expected number N ( v 1 , v 2 ) of particles with speeds between v 1 and v 2 is given by

N ( v 1 , v 2 ) = N v 1 v 2 f ( v ) d v .

[Since N is dimensionless, the unit of f ( v ) is seconds per meter.] We can write this equation conveniently in differential form:

d N = N f ( v ) d v .

In this form, we can understand the equation as saying that the number of molecules with speeds between v and v + d v is the total number of molecules in the sample times f ( v ) times dv . That is, the probability that a molecule’s speed is between v and v + d v is f ( v ) dv .

We can now quote Maxwell’s result, although the proof is beyond our scope.

Maxwell-boltzmann distribution of speeds

The distribution function for speeds of particles in an ideal gas at temperature T is

f ( v ) = 4 π ( m 2 k B T ) 3 / 2 v 2 e m v 2 / 2 k B T .

The factors before the v 2 are a normalization constant; they make sure that N ( 0 , ) = N by making sure that 0 f ( v ) d v = 1 . Let’s focus on the dependence on v . The factor of v 2 means that f ( 0 ) = 0 and for small v , the curve looks like a parabola. The factor of e m 0 v 2 / 2 k B T means that lim v f ( v ) = 0 and the graph has an exponential tail, which indicates that a few molecules may move at several times the rms speed. The interaction of these factors gives the function the single-peaked shape shown in the figure.

Calculating the ratio of numbers of molecules near given speeds

In a sample of nitrogen ( N 2 , with a molar mass of 28.0 g/mol) at a temperature of 273 °C , find the ratio of the number of molecules with a speed very close to 300 m/s to the number with a speed very close to 100 m/s.

Strategy

Since we’re looking at a small range, we can approximate the number of molecules near 100 m/s as d N 100 = f ( 100 m/s ) d v . Then the ratio we want is

d N 300 d N 100 = f ( 300 m/s ) d v f ( 100 m/s ) d v = f ( 300 m/s ) f ( 100 m/s ) .

All we have to do is take the ratio of the two f values.

Solution

  1. Identify the knowns and convert to SI units if necessary.
    T = 300 K , k B = 1.38 × 10 −23 J/K

    M = 0.0280 kg/mol so m = 4.65 × 10 −26 kg
  2. Substitute the values and solve.
    f ( 300 m/s ) f ( 100 m/s ) = 4 π ( m 2 k B T ) 3 / 2 ( 300 m/s ) 2 exp [ m ( 300 m/s ) 2 / 2 k B T ] 4 π ( m 2 k B T ) 3 / 2 ( 100 m/s ) 2 exp [ m ( 100 m/s ) 2 / 2 k B T ] = ( 300 m/s ) 2 exp [ ( 4.65 × 10 −26 kg ) ( 300 m/s ) 2 / 2 ( 1.38 × 10 −23 J/K ) ( 300 K ) ] ( 100 m/s ) 2 exp [ ( 4.65 × 10 −26 kg ) ( 100 m/s ) 2 / 2 ( 1.38 × 10 −23 J/K ) ( 300 K ) ] = 3 2 exp [ ( 4.65 × 10 −26 kg ) [ ( 300 m/s ) 2 ( 100 ms ) 2 ] 2 ( 1.38 × 10 −23 J/K ) ( 300 K ) ] = 5.74
Got questions? Get instant answers now!

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask