<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Solve problems involving heat transfer to and from ideal monatomic gases whose volumes are held constant
  • Solve similar problems for non-monatomic ideal gases based on the number of degrees of freedom of a molecule
  • Estimate the heat capacities of metals using a model based on degrees of freedom

In the chapter on temperature and heat, we defined the specific heat capacity with the equation Q = m c Δ T , or c = ( 1 / m ) Q / Δ T . However, the properties of an ideal gas depend directly on the number of moles in a sample, so here we define specific heat capacity in terms of the number of moles, not the mass. Furthermore, when talking about solids and liquids, we ignored any changes in volume and pressure with changes in temperature—a good approximation for solids and liquids, but for gases, we have to make some condition on volume or pressure changes. Here, we focus on the heat capacity with the volume held constant. We can calculate it for an ideal gas.

Heat capacity of an ideal monatomic gas at constant volume

We define the molar heat capacity at constant volume C V as

C V = 1 n Q Δ T , with V held constant .

This is often expressed in the form

Q = n C V Δ T .

If the volume does not change, there is no overall displacement, so no work is done, and the only change in internal energy is due to the heat flow Δ E int = Q . (This statement is discussed further in the next chapter.) We use the equation E int = 3 n R T / 2 to write Δ E int = 3 n R Δ T / 2 and substitute Δ E for Q to find Q = 3 n R Δ T / 2 , which gives the following simple result for an ideal monatomic gas:

C V = 3 2 R .

It is independent of temperature, which justifies our use of finite differences instead of a derivative. This formula agrees well with experimental results.

In the next chapter we discuss the molar specific heat at constant pressure C p , which is always greater than C V .

Calculating temperature

A sample of 0.125 kg of xenon is contained in a rigid metal cylinder, big enough that the xenon can be modeled as an ideal gas, at a temperature of 20.0 °C . The cylinder is moved outside on a hot summer day. As the xenon comes into equilibrium by reaching the temperature of its surroundings, 180 J of heat are conducted to it through the cylinder walls. What is the equilibrium temperature? Ignore the expansion of the metal cylinder.

Solution

  1. Identify the knowns: We know the initial temperature T 1 is 20.0 °C , the heat Q is 180 J, and the mass m of the xenon is 0.125 kg.
  2. Identify the unknown. We need the final temperature, so we’ll need Δ T .
  3. Determine which equations are needed. Because xenon gas is monatomic, we can use Q = 3 n R Δ T / 2 . Then we need the number of moles, n = m / M .
  4. Substitute the known values into the equations and solve for the unknowns.
    The molar mass of xenon is 131.3 g, so we obtain
    n = 125 g 131.3 g/mol = 0.952 mol,

    Δ T = 2 Q 3 n R = 2 ( 180 J ) 3 ( 0.952 mol ) ( 8.31 J/mol · ° C ) = 15.2 ° C .

    Therefore, the final temperature is 35.2 °C . The problem could equally well be solved in kelvin; as a kelvin is the same size as a degree Celsius of temperature change, you would get Δ T = 15.2 K .

Significance

The heating of an ideal or almost ideal gas at constant volume is important in car engines and many other practical systems.

Got questions? Get instant answers now!

Questions & Answers

what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what's cornea?
Majak Reply
what are cell
Achol
Explain the following terms . (1) Abiotic factors in an ecosystem
Nomai Reply
Abiotic factors are non living components of ecosystem.These include physical and chemical elements like temperature,light,water,soil,air quality and oxygen etc
Qasim
Define the term Abiotic
Marial
what is biology
daniel Reply
what is diffusion
Emmanuel Reply
passive process of transport of low-molecular weight material according to its concentration gradient
AI-Robot
what is production?
Catherine
hello
Marial
Pathogens and diseases
how did the oxygen help a human being
Achol Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask