<< Chapter < Page Chapter >> Page >
A graph of the molar heat capacity C V in joules per mole Kelvin as a function of temperature in Kelvin. The horizontal scale is logarithmic and extends from 10 to 10,000. The vertical scale is linear and extends from 10 to 30. The graph shows three steps. The first extends from about 20 K to 50 K at a constant value of about 12.5 Joules per Mole Kelvin. This step is labeled three halves R. The graph rises gradually to another step that extends from about 300 K to about 500 K at a constant value of about 20 Joules per Mole Kelvin. This step is labeled five halves R. The graph again rises gradually and flattens to start a third step at around 3000 K at a constant value of just under 30 Joules per Mole Kelvin. This step is labeled seven halves R.
The molar heat capacity of hydrogen as a function of temperature (on a logarithmic scale). The three “steps” or “plateaus” show different numbers of degrees of freedom that the typical energies of molecules must achieve to activate. Translational kinetic energy corresponds to three degrees of freedom, rotational to another two, and vibrational to yet another two.

Polyatomic molecules typically have one additional rotational degree of freedom at room temperature, since they have comparable moments of inertia around any axis. Thus, at room temperature, they have d = 6 , and at high temperature, d = 8 . We usually assume that gases have the theoretical room-temperature values of d .

As shown in [link] , the results agree well with experiments for many monatomic and diatomic gases, but the agreement for triatomic gases is only fair. The differences arise from interactions that we have ignored between and within molecules.

C V / R For various monatomic, diatomic, and triatomic gases
Gas C V / R at 25 °C and 1 atm
Ar 1.50
He 1.50
Ne 1.50
CO 2.50
H 2 2.47
N 2 2.50
O 2 2.53
F 2 2.8
CO 2 3.48
H 2 S 3.13
N 2 O 3.66

What about internal energy for diatomic and polyatomic gases? For such gases, C V is a function of temperature ( [link] ), so we do not have the kind of simple result we have for monatomic ideal gases.

Molar heat capacity of solid elements

The idea of equipartition leads to an estimate of the molar heat capacity of solid elements at ordinary temperatures. We can model the atoms of a solid as attached to neighboring atoms by springs ( [link] ).

The figure is an illustration of a model of a solid. Seven atoms, one at the center and one on either side, above, below, in front and behind it, are represented as small spheres. The center atom is connected to each of the others by a spring, labeled as ideal springs. The neighboring atoms have additional springs to connect them to their nearest neighbors, which are not included in the drawing.
In a simple model of a solid element, each atom is attached to others by six springs, two for each possible motion: x , y , and z . Each of the three motions corresponds to two degrees of freedom, one for kinetic energy and one for potential energy. Thus d = 6 .

Analogously to the discussion of vibration in the previous module, each atom has six degrees of freedom: one kinetic and one potential for each of the x -, y -, and z -directions. Accordingly, the molar specific heat of a metal should be 3 R . This result, known as the Law of Dulong and Petit , works fairly well experimentally at room temperature. (For every element, it fails at low temperatures for quantum-mechanical reasons. Since quantum effects are particularly important for low-mass particles, the Law of Dulong and Petit already fails at room temperature for some light elements, such as beryllium and carbon. It also fails for some heavier elements for various reasons beyond what we can cover.)

Problem-solving strategy: heat capacity and equipartition

The strategy for solving these problems is the same as the one in Phase Changes for the effects of heat transfer. The only new feature is that you should determine whether the case just presented—ideal gases at constant volume—applies to the problem. (For solid elements, looking up the specific heat capacity is generally better than estimating it from the Law of Dulong and Petit.) In the case of an ideal gas, determine the number d of degrees of freedom from the number of atoms in the gas molecule and use it to calculate C V (or use C V to solve for d ).

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask