<< Chapter < Page | Chapter >> Page > |
The German physicist Heinrich Hertz (1857–1894) was the first to generate and detect certain types of electromagnetic waves in the laboratory. Starting in 1887, he performed a series of experiments that not only confirmed the existence of electromagnetic waves but also verified that they travel at the speed of light.
Hertz used an alternating-current RLC (resistor-inductor-capacitor) circuit that resonates at a known frequency and connected it to a loop of wire, as shown in [link] . High voltages induced across the gap in the loop produced sparks that were visible evidence of the current in the circuit and helped generate electromagnetic waves.
Across the laboratory, Hertz placed another loop attached to another RLC circuit, which could be tuned (as the dial on a radio) to the same resonant frequency as the first and could thus be made to receive electromagnetic waves. This loop also had a gap across which sparks were generated, giving solid evidence that electromagnetic waves had been received.
Hertz also studied the reflection, refraction, and interference patterns of the electromagnetic waves he generated, confirming their wave character. He was able to determine the wavelengths from the interference patterns, and knowing their frequencies, he could calculate the propagation speed using the equation , where v is the speed of a wave, f is its frequency, and is its wavelength. Hertz was thus able to prove that electromagnetic waves travel at the speed of light. The SI unit for frequency, the hertz ( ), is named in his honor.
Check Your Understanding Could a purely electric field propagate as a wave through a vacuum without a magnetic field? Justify your answer.
No. The changing electric field according to the modified version of Ampère’s law would necessarily induce a changing magnetic field.
Notification Switch
Would you like to follow the 'University physics volume 2' conversation and receive update notifications?