<< Chapter < Page | Chapter >> Page > |
When the coil of a motor is turned, magnetic flux changes through the coil, and an emf (consistent with Faraday’s law) is induced. The motor thus acts as a generator whenever its coil rotates. This happens whether the shaft is turned by an external input, like a belt drive, or by the action of the motor itself. That is, when a motor is doing work and its shaft is turning, an emf is generated. Lenz’s law tells us the emf opposes any change, so that the input emf that powers the motor is opposed by the motor’s self-generated emf, called the back emf of the motor ( [link] ).
The generator output of a motor is the difference between the supply voltage and the back emf. The back emf is zero when the motor is first turned on, meaning that the coil receives the full driving voltage and the motor draws maximum current when it is on but not turning. As the motor turns faster, the back emf grows, always opposing the driving emf, and reduces both the voltage across the coil and the amount of current it draws. This effect is noticeable in many common situations. When a vacuum cleaner, refrigerator, or washing machine is first turned on, lights in the same circuit dim briefly due to the IR drop produced in feeder lines by the large current drawn by the motor.
When a motor first comes on, it draws more current than when it runs at its normal operating speed. When a mechanical load is placed on the motor, like an electric wheelchair going up a hill, the motor slows, the back emf drops, more current flows, and more work can be done. If the motor runs at too low a speed, the larger current can overheat it (via resistive power in the coil, perhaps even burning it out. On the other hand, if there is no mechanical load on the motor, it increases its angular velocity until the back emf is nearly equal to the driving emf. Then the motor uses only enough energy to overcome friction.
Eddy currents in iron cores of motors can cause troublesome energy losses. These are usually minimized by constructing the cores out of thin, electrically insulated sheets of iron. The magnetic properties of the core are hardly affected by the lamination of the insulating sheet, while the resistive heating is reduced considerably. Consider, for example, the motor coils represented in [link] . The coils have an equivalent resistance of and are driven by an emf of 48.0 V. Shortly after being turned on, they draw a current
and thus dissipate of energy as heat transfer. Under normal operating conditions for this motor, suppose the back emf is 40.0 V. Then at operating speed, the total voltage across the coils is 8.0 V (48.0 V minus the 40.0 V back emf), and the current drawn is
Under normal load, then, the power dissipated is This does not cause a problem for this motor, whereas the former 5.76 kW would burn out the coils if sustained.
Notification Switch
Would you like to follow the 'University physics volume 2' conversation and receive update notifications?