<< Chapter < Page | Chapter >> Page > |
When is varied over a range of positive and negative values, B is found to behave as shown in [link] . Note that the same (corresponding to the same current in the solenoid) can produce different values of B in the material. The magnetic field B produced in a ferromagnetic material by an applied field depends on the magnetic history of the material. This effect is called hysteresis , and the curve of [link] is called a hysteresis loop. Notice that B does not disappear when (i.e., when the current in the solenoid is turned off). The iron stays magnetized, which means that it has become a permanent magnet.
Like the paramagnetic sample of [link] , the partial alignment of the domains in a ferromagnet is equivalent to a current flowing around the surface. A bar magnet can therefore be pictured as a tightly wound solenoid with a large current circulating through its coils (the surface current). You can see in [link] that this model fits quite well. The fields of the bar magnet and the finite solenoid are strikingly similar. The figure also shows how the poles of the bar magnet are identified. To form closed loops, the field lines outside the magnet leave the north (N) pole and enter the south (S) pole, whereas inside the magnet, they leave S and enter N.
Ferromagnetic materials are found in computer hard disk drives and permanent data storage devices ( [link] ). A material used in your hard disk drives is called a spin valve, which has alternating layers of ferromagnetic (aligning with the external magnetic field) and antiferromagnetic (each atom is aligned opposite to the next) metals. It was observed that a significant change in resistance was discovered based on whether an applied magnetic field was on the spin valve or not. This large change in resistance creates a quick and consistent way for recording or reading information by an applied current.
Notification Switch
Would you like to follow the 'University physics volume 2' conversation and receive update notifications?