<< Chapter < Page | Chapter >> Page > |
We can understand the experimental facts by noting that the transferred heat is the change in the internal energy, which is the total energy of the molecules. Under typical conditions, the total kinetic energy of the molecules is a constant fraction of the internal energy (for reasons and with exceptions that we’ll see in the next chapter). The average kinetic energy of a molecule is proportional to the absolute temperature. Therefore, the change in internal energy of a system is typically proportional to the change in temperature and to the number of molecules, N . Mathematically, The dependence on the substance results in large part from the different masses of atoms and molecules. We are considering its heat capacity in terms of its mass, but as we will see in the next chapter, in some cases, heat capacities per molecule are similar for different substances. The dependence on substance and phase also results from differences in the potential energy associated with interactions between atoms and molecules.
A practical approximation for the relationship between heat transfer and temperature change is:
where Q is the symbol for heat transfer (“quantity of heat”), m is the mass of the substance, and is the change in temperature. The symbol c stands for the specific heat (also called “ specific heat capacity ”) and depends on the material and phase. The specific heat is numerically equal to the amount of heat necessary to change the temperature of kg of mass by . The SI unit for specific heat is or . (Recall that the temperature change is the same in units of kelvin and degrees Celsius.)
Values of specific heat must generally be measured, because there is no simple way to calculate them precisely. [link] lists representative values of specific heat for various substances. We see from this table that the specific heat of water is five times that of glass and 10 times that of iron, which means that it takes five times as much heat to raise the temperature of water a given amount as for glass, and 10 times as much as for iron. In fact, water has one of the largest specific heats of any material, which is important for sustaining life on Earth.
The specific heats of gases depend on what is maintained constant during the heating—typically either the volume or the pressure. In the table, the first specific heat value for each gas is measured at constant volume, and the second (in parentheses) is measured at constant pressure. We will return to this topic in the chapter on the kinetic theory of gases.
Substances | Specific Heat ( c ) | |
---|---|---|
Solids | ||
Aluminum | 900 | 0.215 |
Asbestos | 800 | 0.19 |
Concrete, granite (average) | 840 | 0.20 |
Copper | 387 | 0.0924 |
Glass | 840 | 0.20 |
Gold | 129 | 0.0308 |
Human body (average at ) | 3500 | 0.83 |
Ice (average, ) | 2090 | 0.50 |
Iron, steel | 452 | 0.108 |
Lead | 128 | 0.0305 |
Silver | 235 | 0.0562 |
Wood | 1700 | 0.40 |
Liquids | ||
Benzene | 1740 | 0.415 |
Ethanol | 2450 | 0.586 |
Glycerin | 2410 | 0.576 |
Mercury | 139 | 0.0333 |
Water | 4186 | 1.000 |
Gases [3] | ||
Air (dry) | 721 (1015) | 0.172 (0.242) |
Ammonia | 1670 (2190) | 0.399 (0.523) |
Carbon dioxide | 638 (833) | 0.152 (0.199) |
Nitrogen | 739 (1040) | 0.177 (0.248) |
Oxygen | 651 (913) | 0.156 (0.218) |
Steam | 1520 (2020) | 0.363 (0.482) |
Notification Switch
Would you like to follow the 'University physics volume 2' conversation and receive update notifications?