<< Chapter < Page | Chapter >> Page > |
At some time a laser photon will run into another excited electron. Then stimulated emission occurs and the electron drops down to the ground state and emits an additional identical photon as shown in [link] . Since the laser material typically has a large number of atoms, one laser photon passing through this material will rapidly cause a large number of photons just like it to be emitted.
The optical cavity keeps the laser photons inside the laser cavity so that they can build up the laser beam. At each end is a concave mirror; one is a full mirror and one is a partial mirror. The full mirror is totally reflective. The partial mirror transmits a small amount of the light that hits it (less than 1%). The mirrors are carefully aligned so that photons that reflect off one mirror become “trapped”, and bounce back and forth between the mirrors many times causing more and more stimulated emission. The photons that eventually escape through the partially-silvered mirror become the laser beam that we see.
As the photons bounce between mirrors, they continually pass through the laser material, stimulating those atoms to emit more photons. This creates an ever increasing beam of photons, all with the same characteristics, all traveling in the same direction. In this way, the optical cavity helps to amplify the original laser photons into a concentrated, intense beam of photons.
The laser cavity also helps to narrow the frequency range of laser light emitted. The distance between the two mirrors defines the cavity mode which only allows light of a narrow range of frequencies to continue being reflected back and forth. Light of other frequencies damped out. (This is just like in the chapter on the physics of music where a pipe of a certain length corresponds to a particular wavelength of sound.) Therefore only a narrow frequency of light can be emitted.
In 1953, Charles H. Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first maser, a device operating on similar principles to the laser, but producing microwave rather than optical radiation. Townes's maser was incapable of making a continuous beam. Nikolay Basov and Aleksandr Prokhorov of the former Soviet Union worked independently and developed a method of making a continuous beam using more than two energy levels. Townes, Basov and Prokhorov shared the Nobel Prize in Physics in 1964.
Although the first working laser was only produced in 1958, lasers are now found in many household items. For example, lasers are well-known through their use as cheap laser pointers. However, lasers can be very dangerous to the human eye since a large amount of energy is focused into a very narrow beam. NEVER POINT A LASER POINTER INTO SOMEBODY'S EYES - IT CAN BLIND THEM FOREVER.
Other uses include:
Do research in a library or on the Internet on one application of laser technology. Explain how the technology works by using a laser.
You will need to present your findings to the class in the form of a poster. You can think of any useful application, but to give you some ideas of where to start, some applications are listed below:
Notification Switch
Would you like to follow the 'Siyavula textbooks: grade 12 physical science' conversation and receive update notifications?