<< Chapter < Page Chapter >> Page >

Frames of reference

Introduction

Top view of a road with two people standing on opposite sides. A car drives past.

Consider two people standing, facing each other on either side of a road. A car drives past them, heading West. For the person facing South, the car was moving toward the right. However, for the person facing North, the car was moving toward the left. This discrepancy is due to the fact that the two people used two different frames of reference from which to investigate this system. If each person were asked in what direction the car were moving, they would give a different answer. The answer would be relative to their frame of reference.

What is a frame of reference ?

Frame of Reference

A frame of reference is the point of view from which a system is observed.

In practical terms, a frame of reference is a set of axes (specifying directions) with an origin. An observer can then measure the position and motion of all points in a system, as well as the orientation of objects in the system relative to the frame of reference.

There are two types of reference frames: inertial and non-inertial. An inertial frame of reference travels at a constant velocity, which means that Newton's first law (inertia) holds true. A non-inertial frame of reference, such as a moving car or a rotating carousel, accelerates. Therefore, Newton's first law does not hold true in a non-inertial reference frame, as objects appear to accelerate without the appropriate forces.

Why are frames of reference important?

Frames of reference are important because (as we have seen in the introductory example) the velocity of a car can differ depending on which frame of reference is used.

Frames of reference and special relativity

Frames of reference are especially important in special relativity, because when a frame of reference is moving at some significant fraction of the speed of light, then the flow of time in that frame does not necessarily apply in another reference frame. The speed of light is considered to be the only true constant between moving frames of reference.

The next worked example will explain this.

Relative velocity

The velocity of an object is frame dependent. More specifically, the perceived velocity of an object depends on the velocity of the observer. For example, a person standing on shore would observe the velocity of a boat to be different than a passenger on the boat.

The speedometer of a motor boat reads 5 m · s - 1 . The boat is moving East across a river which has a current traveling 3 m · s - 1 North. What would the velocity of the motor boat be according to an observer on the shore?

  1. R = ( 3 ) 2 + ( 5 ) 2 = 34 = 5 , 8 m · s - 1
    tan θ = 5 3 θ = 59 , 04

    The observer on the shore sees the boat moving with a velocity of 5,8 m · s - 1 at 59,04 east of north due to the current pushing the boat perpendicular to its velocity. This is contrary to the perspective of a passenger on the boat who perceives the velocity of the boat to be 5 m · s - 1 due East. Both perspectives are correct as long as the frame of the observer is considered.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 12 physical science. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11244/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 12 physical science' conversation and receive update notifications?

Ask