<< Chapter < Page Chapter >> Page >

Transistor

The diode is the simplest semiconductor device, made up of a p-type semiconductor and an n-type semiconductor in contact. It can conduct in only one direction, but it cannot control the size of an electric current. Transistors are more complicated electronic components which can control the size of the electric current flowing through them.

This enables them to be used in amplifiers. A small signal from a microphone or a radio antenna can be used to control the transistor. In response, the transistor will then increase and decrease a much larger current which flows through the speakers.

Interesting fact

One of the earliest popular uses of transistors was in cheap and portable radios. Before that, radios were much more expensive and contained glass valves which were fragile and needed replacing. In some parts of the world you can still hear people talking about their `transistor' — they mean their portable radio.

You can also use a small current to turn the transistor on and off. The transistor then controls a more complicated or powerful current through other components. When a transistor is used in this way it is said to be in switching mode as it is acting as a remotely controlled switch. As we shall see in the final sections of this chapter, switching circuits can be used in a computer to process and store digital information. A computer would not work without the millions (or billions) of transistors in it.

There are two main types of transistor - bipolar transistors (NPN or PNP), and field effect transistors (FETs). Both use doped semiconductors, but in different ways. You are mainly required to know about field effect transistors (FETs), however we have to give a brief description of bipolar transistors so that you see the difference.

Bipolar transistors

Bipolar transistors are made of a doped semiconductor `sandwich'. In an NPN transistor, a very thin layer of p-type semiconductor is in between two thicker layers of n-type semiconductor. This is shown in [link] . Similarly an PNP transistor consists of a very thin n-type layer in between two thicker layers of p-type semiconductor.

An NPN transistor. This is a type of bipolar transistor.

In an NPN transistor a small current of electrons flows from the emitter (E) to the base (B). Simultaneously, a much larger current of electrons flows from the emitter (E) to the collector (C). If you lower the number of electrons able to leave the transistor at the base (B), the transistor automatically reduces the number of electrons flowing from emitter (E) to collector (C). Similarly, if you increase the current of electrons flowing out of the base (B), the transistor automatically also increases the current of electrons flowing from emitter (E) to collector (C). The transistor is designed so that the current of electrons from emitter to collector ( I E C ) is proportional to the current of electrons from emitter to base ( I E B ). The constant of proportionality is known as the current gain β . So I E C = β I E B .

How does it do it? The answer comes from our work with diodes. Electrons arriving at the emitter (n-type semiconductor) will naturally flow through into the central p-type since the base-emitter junction is forward biased. However if none of these electrons are removed from the base, the electrons flowing into the base from the emitter will fill all of the available `holes'. Accordingly, a large depletion band will be set up. This will act as an insulator preventing current flow into the collector as well. On the other hand, if the base is connected to a positive voltage, a small number of electrons will be removed by the base connection. This will prevent the `holes' in the base becoming filled up, and no depletion band will form. While some electrons from the emitter leave via the base connection, the bulk of them flow straight on to the collector. You may wonder how the electrons get from the base into the collector (it seems to be reverse biased). The answer is complicated, but the important fact is that the p-type layer is extremely thin. As long as there is no depletion layer, the bulk of the electrons will have no difficulty passing straight from the n-type emitter into the n-type collector. A more satisfactory answer can be given to a university student once band theory has been explained.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 12 physical science. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11244/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 12 physical science' conversation and receive update notifications?

Ask