<< Chapter < Page Chapter >> Page >

In a gas, the atoms are spaced far apart and they do not influence each other. However, the atoms in a solid greatly influence each other. The forces that bind these atoms together in a solid affect how the electrons of the atoms behave, by causing the individual energy levels of an atom to break up and form energy bands. The resulting energy levels are more closely spaced than those in the individual atoms. The energy bands still contain discrete energy levels, but there are now many more energy levels than in the single atom.

In crystalline solids, atoms interact with their neighbors, and the energy levels of the electrons in isolated atoms turn into bands. Whether a material conducts or not is determined by its band structure.

Electrons follow the Pauli exclusion principle, meaning that two electrons cannot occupy the same state. Thus electrons in a solid fill up the energy bands up to a certain level (this is called the Fermi energy). Bands which are completely full of electrons cannot conduct electricity, because there is no state of nearby energy to which the electrons can jump. Materials in which all bands are full are insulators.

Metals

Metals are good conductors because they have unfilled spaces in the valence energy band. In the absence of an electric field, there are electrons traveling in all directions. When an electric field is applied the mobile electrons flow. Electrons in this band can be accelerated by the electric field because there are plenty of nearby unfilled spaces in the band.

Insulator

The energy diagram for the insulator shows the insulator with a very wide energy gap. The wider this gap, the greater the amount of energy required to move the electron from the valence band to the conduction band. Therefore, an insulator requires a large amount of energy to obtain a small amount of current. The insulator “insulates" because of the wide forbidden band or energy gap.

Breakdown

A solid with filled bands is an insulator. If we raise the temperature the electrons gain thermal energy. If there is enough energy added then electrons can be thermally excited from the valence band to the conduction band. The fraction of electrons excited in this way depends on:

  • the temperature and
  • the band gap, the energy difference between the two bands.

Exciting these electrons into the conduction band leaves behind positively charged holes in the valence band, which can also conduct electricity.

Semi-conductors

A semi-conductor is very similar to an insulator. The main difference between semiconductors and insulators is the size of the band gap between the conduction and valence bands. The band gap in insulators is larger than the band gap in semiconductors.

In semi-conductors at room temperature, just as in insulators, very few electrons gain enough thermal energy to leap the band gap, which is necessary for conduction. For this reason, pure semi-conductors and insulators, in the absence of applied fields, have roughly similar electrical properties. The smaller band gaps of semi-conductors, however, allow for many other means besides temperature to control their electrical properties. The most important one being that for a certain amount of applied voltage, more current will flow in the semiconductor than in the insulator.

Conduction

  1. Explain how energy levels of electrons in an atom combine with those of other atoms in the formation of crystals.
  2. Explain how the resulting energy levels are more closely spaced than those in the individual atoms, forming energy bands.
  3. Explain the existence of energy bands in metal crystals as the result of superposition of energy levels.
  4. Explain and contrast the conductivity of conductors, semi-conductors and insulators using energy band theory.
  5. What is the main difference in the energy arrangement between an isolated atom and the atom in a solid?
  6. What determines whether a solid is an insulator, a semiconductor, or a conductor?

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 physical science. OpenStax CNX. Jul 29, 2011 Download for free at http://cnx.org/content/col11241/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 physical science' conversation and receive update notifications?

Ask