<< Chapter < Page Chapter >> Page >

Introduction

The study of electrical circuits is essential to understand the technology that uses electricity in the real-world. This includes electricity being used for the operation of electronic devices like computers.

Ohm's law

Definition of ohm's law

Experiment : ohm's law

Aim:

In this experiment we will look at the relationship between the current going through a resistor and the potential difference (voltage) across the same resistor.

Method:

  1. Set up the circuit according to the circuit diagram, starting with just one cell.
  2. Draw the following table in your lab book.
    Voltage, V (V) Current, I (A)
    1,5
    3,0
    4,5
    6,0
  3. Get your teacher to check the circuit before turning the power on.
  4. Measure the current.
  5. Add one more 1,5 V cell to the circuit and measure the current again.
  6. Repeat until you have four cells and you have completed your table.
  7. Draw a graph of voltage versus current.

Results:

  1. Does your experimental results verify Ohm's Law? Explain.
  2. How would you go about finding the resistance of an unknown resistor using only a power supply, a voltmeter and a known resistor R 0 ?

Activity : ohm's law

If you do not have access to the equipment necessary for the Ohm's Law experiment, you can do this activity.

Voltage, V (V) Current, I (A)
3,0 0,4
6,0 0,8
9,0 1,2
12,0 1,6
  1. Plot a graph of voltage (on the x -axis) and current (on the y -axis).

Conclusions:

  1. What type of graph do you obtain (straight line, parabola, other curve)
  2. Calculate the gradient of the graph.
  3. Do your experimental results verify Ohm's Law? Explain.
  4. How would you go about finding the resistance of an unknown resistor using only a power supply, a voltmeter and a known resistor R 0 ?

An important relationship between the current, voltage and resistance in a circuit was discovered by Georg Simon Ohm and is called Ohm's Law .

Ohm's Law

The amount of electric current through a metal conductor, at a constant temperature, in a circuit is proportional to the voltage across the conductor. Mathematically, Ohm's Law is written:

V = R · I .

Ohm's Law tells us that if a conductor is at a constant temperature, the current flowing through the conductor is proportional to the voltage across it. This means that if we plot voltage on the x -axis of a graph and current on the y -axis of the graph, we will get a straight-line. The gradient of the straight-line graph is related to the resistance of the conductor.

Phet simulation for ohm's law

Ohmic and non-ohmic conductors

As you have seen, there is a mention of constant temperature when we talk about Ohm's Law. This is because the resistance of some conductors changes as their temperature changes. These types of conductors are called non-ohmic conductors, because they do not obey Ohm's Law. As can be expected, the conductors that obey Ohm's Law are called ohmic conductors. A light bulb is a common example of a non-ohmic conductor. Nichrome wire is an ohmic conductor.

In a light bulb, the resistance of the filament wire will increase dramatically as it warms from room temperature to operating temperature. If we increase the supply voltage in a real lamp circuit, the resulting increase in current causes the filament to increase in temperature, which increases its resistance. This effectively limits the increase in current. In this case, voltage and current do not obey Ohm's Law.

The phenomenon of resistance changing with variations in temperature is one shared by almost all metals, of which most wires are made. For most applications, these changes in resistance are small enough to be ignored. In the application of metal lamp filaments, which increase a lot in temperature (up to about 1000 C, and starting from room temperature) the change is quite large.

In general non-ohmic conductors have plots of voltage against current that are curved, indicating that the resistance is not constant over all values of voltage and current.

Experiment : ohmic and non-ohmic conductors

Repeat the experiment as decribed in the previous section. In this case use a light bulb as a resistor. Compare your results to the ohmic resistor.

Using ohm's law

We are now ready to see how Ohm's Law is used to analyse circuits.

Consider the circuit with an ohmic resistor, R . If the resistor has a resistance of 5  Ω and voltage across the resistor is 5 V, then we can use Ohm's law to calculate the current flowing through the resistor.

Ohm's law is:

V = R · I

which can be rearranged to:

I = V R

The current flowing through the resistor is:

I = V R = 5 V 5 Ω = 1 A

The resistance of the above resistor is 10  Ω and the current going through the resistor is 4 A. What is the potential difference (voltage) across the resistor?

  1. It is an Ohm's Law problem. So we use the equation:

    V = R · I
  2. V = R · I = ( 10 ) ( 4 ) = 40 V
  3. The voltage across the resistor is 40 V.

Got questions? Get instant answers now!

Ohm's law

  1. Calculate the resistance of a resistor that has a potential difference of 8 V across it when a current of 2 A flows through it.
  2. What current will flow through a resistor of 6  Ω when there is a potential difference of 18 V across its ends?
  3. What is the voltage across a 10  Ω resistor when a current of 1,5 A flows though it?

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 physical science. OpenStax CNX. Jul 29, 2011 Download for free at http://cnx.org/content/col11241/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 physical science' conversation and receive update notifications?

Ask