<< Chapter < Page Chapter >> Page >

Introduction

What is your favorite musical instrument? How do you play it? Do you pluck a string, like a guitar? Do you blow through it, like a flute? Do you hit it, like a drum?All musical instruments work by making standing waves. Each instrument has a unique sound because of the special waves made in it. These waves could be in the strings of a guitar or violin.They could also be in the skin of a drum or a tube of air in a trumpet. These waves are picked up by the air and later reach your ear as sound.

In Grade 10, you learned about standing waves and boundary conditions. We saw a rope that was:

  • fixed at both ends
  • fixed at one end and free at the other

We also saw a pipe that was:

  • closed at both ends
  • open at both ends
  • open at one end, closed at the other

String and wind instruments are good examples of standing waves on strings and pipes.

One way to describe standing waves is to count nodes. Recall that a node is a point on a string that does not move as the wave changes.The anti-nodes are the highest and lowest points on the wave. There is a node at each end of a fixed string. There is also a node at the closed end of a pipe.But an open end of a pipe has an anti-node.

What causes a standing wave? There are incident and reflected waves traveling back and forth on our string or pipe. For some frequencies, these waves combine in just the right way so that the whole wave appears to be standing still.These special cases are called harmonic frequencies, or harmonics . They depend on the length and material of the medium.

Harmonic

A harmonic frequency is a frequency at which standing waves can be made in a particular object or on a particular instrument.

Standing waves in string instruments

Let us look at a basic "instrument": a string pulled tight and fixed at both ends. When you pluck the string, you hear a certain pitch. This pitch is made by a certain frequency.What causes the string to emit sounds at this pitch?

You have learned that the frequency of a standing wave depends on the length of the wave. The wavelength depends on the nodes and anti-nodes.The longest wave that can "fit" on the string is shown in [link] . This is called the fundamental or natural frequency of the string. The string has nodes at both ends. The wavelength of the fundamental is twice the length of the string.

Now put your finger on the center of the string. Hold it down gently and pluck it. The standing wave now has a node in the middle of the string. There are three nodes.We can fit a whole wave between the ends of the string. This means the wavelength is equal to the length of the string.This wave is called the first harmonic. As we add more nodes, we find the second harmonic, third harmonic, and so on.We must keep the nodes equally spaced or we will lose our standing wave.

Harmonics on a string fixed at both ends.

Investigation : waves on a string fixed at both ends

This chart shows various waves on a string. The string length L is the dashed line.

  1. Fill in the:
    • number of nodes
    • number of anti-nodes
    • wavelength in terms of L
    The first and last waves are done for you.
    Wave Nodes Antinodes Wavelength
  2. Use the chart to find a formula for the wavelength in terms of the number of nodes.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 physical science. OpenStax CNX. Jul 29, 2011 Download for free at http://cnx.org/content/col11241/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 physical science' conversation and receive update notifications?

Ask