<< Chapter < Page Chapter >> Page >

Change in momentum

Let us consider a tennis ball (mass = 0,1 kg) that is dropped at an initial velocity of 5 m · s - 1 and bounces back at a final velocity of 3 m · s - 1 . As the ball approaches the floor it has a momentum that we call the momentum before the collision. When it moves away from the floor it has a different momentum called the momentum after the collision. The bounce on the floor can be thought of as a collision taking place where the floor exerts a force on the tennis ball to change its momentum.

The momentum before the bounce can be calculated as follows:

Because momentum and velocity are vectors, we have to choose a direction as positive. For this example we choose the initial direction of motion as positive, in other words, downwards is positive.

p i = m · v i = ( 0 , 1 kg ) ( + 5 m · s - 1 ) = 0 , 5 kg · m · s - 1 downwards

When the tennis ball bounces back it changes direction. The final velocity will thus have a negative value. The momentum after the bounce can be calculated as follows:

p f = m · v f = ( 0 , 1 kg ) ( - 3 m · s - 1 ) = - 0 , 3 kg · m · s - 1 = 0 , 3 kg · m · s - 1 upwards

Now let us look at what happens to the momentum of the tennis ball. The momentum changes during this bounce. We can calculate the change in momentum as follows:

Again we have to choose a direction as positive and we will stick to our initial choice as downwards is positive. This means that the final momentum will have a negative number.

Δ p = p f - p i = m · v f - m · v i = ( - 0 , 3 kg ) - ( 0 , 5 m · s - 1 ) = - 0 , 8 kg · m · s - 1 = 0 , 8 kg · m · s - 1 upwards

You will notice that this number is bigger than the previous momenta calculated. This is should be the case as the ball needed to be stopped and then given momentum to bounce back.

A rubber ball of mass 0,8 kg is dropped and strikes the floor with an initial velocity of 6 m · s - 1 . It bounces back with a final velocity of 4 m · s - 1 . Calculate the change in the momentum of the rubber ball caused by the floor.

  1. The question explicitly gives

    • the ball's mass (m = 0,8 kg),
    • the ball's initial velocity (v i = 6 m · s - 1 ), and
    • the ball's final velocity (v f = 4 m · s - 1 )

    all in the correct units.

    We are asked to calculate the change in momentum of the ball,

    Δ p = m v f - m v i

    We have everything we need to find Δ p . Since the initial momentum is directed downwards and the final momentum is in the upward direction, we can use the algebraic method of subtraction discussed in the vectors chapter.

  2. Let us choose down as the positive direction.

  3. Δ p = m v f - m v i = ( 0 , 8 kg ) ( - 4 m · s - 1 ) - ( 0 , 8 kg ) ( + 6 m · s - 1 ) = ( - 3 , 2 kg · m · s - 1 ) - ( 4 , 8 kg · m · s - 1 ) = - 8 = 8 kg · m · s - 1 upwards
Got questions? Get instant answers now!

Exercise

  1. Which expression accurately describes the change of momentum of an object?
    1. F m
    2. F t
    3. F · m
    4. F · t
  2. A child drops a ball of mass 100 g. The ball strikes the ground with a velocity of 5 m · s - 1 and rebounds with a velocity of 4 m · s - 1 . Calculate the change of momentum of the ball.
  3. A 700 kg truck is travelling north at a velocity of 40 km · hr - 1 when it is approached by a 500 kg car travelling south at a velocity of 100 km · hr - 1 . Calculate the total momentum of the system.

Newton's second law revisited

You have learned about Newton's Second Law of motion earlier in this chapter. Newton's Second Law describes the relationship between the motion of an object and the net force on the object. We said that the motion of an object, and therefore its momentum, can only change when a resultant force is acting on it. We can therefore say that because a net force causes an object to move, it also causes its momentum to change. We can now define Newton's Second Law of motion in terms of momentum.

Newton's Second Law of Motion (N2)

The net or resultant force acting on an object is equal to the rate of change of momentum.

Mathematically, Newton's Second Law can be stated as:

F n e t = Δ p Δ t

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 physical science. OpenStax CNX. Jul 29, 2011 Download for free at http://cnx.org/content/col11241/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 physical science' conversation and receive update notifications?

Ask