<< Chapter < Page Chapter >> Page >

Different types of forces

Tension

Tension is the magnitude of the force that exists in objects like ropes, chains and struts that are providing support. For example, there are tension forces in the ropes supporting a child's swing hanging from a tree.

Contact and non-contact forces

In this chapter we have come across a number of different types of forces, for example a push or a pull, tension in a string, frictional forces and the normal force. These are all examples of contact forces where there is a physical point of contact between applying the force and the object. Non-contact forces are forces that act over a distance, for example magnetic forces, electrostatic forces and gravitational forces.

When an object is placed on a surface, two types of surface forces can be identified. Friction is a force that acts between the surface and the object and is parallel to the surface. The normal force is a force that acts between the object and the surface and is perpendicular to the surface.

The normal force

A 5 kg box is placed on a rough surface and a 10 N force is applied at an angle of 36,9 to the horizontal. The box does not move. The normal force (N or F N ) is the force between the box and the surface acting in the vertical direction. If this force is not present the box would fall through the surface because the force of gravity pulls it downwards. The normal force therefore acts upwards. We can calculate the normal force by considering all the forces in the vertical direction. All the forces in the vertical direction must add up to zero because there is no movement in the vertical direction.

N + F y + F g = 0 N + 6 + ( - 49 ) = 0 N = 43 N upwards
Friction and the normal force

The most interesting and illustrative normal force question, that is often asked, has to do with a scale in a lift. Using Newton's third law we can solve these problems quite easily.

When you stand on a scale to measure your weight you are pulled down by gravity. There is no acceleration downwards because there is a reaction force we call the normal force acting upwards on you. This is the force that the scale would measure. If the gravitational force were less then the reading on the scale would be less.

A man with a mass of 100 kg stands on a scale (measuring newtons). What is the reading on the scale?

  1. We are given the mass of the man. We know the gravitational acceleration that acts on him is 9,8 = m · s - 2 .

  2. The scale measures the normal force on the man. This is the force that balances gravity. We can use Newton's laws to solve the problem:

    F r = F g + F N

    where F r is the resultant force on the man.

  3. F g = m g = ( 100 kg ) ( 9 , 8 m · s - 2 ) = 980 kg · m · s - 2 = 980 N downwards
  4. We now know the gravitational force downwards. We know that the sum of all the forces must equal the resultant acceleration times the mass. The overall resultant acceleration of the man on the scale is 0 - so F r = 0 .

    F r = F g + F N 0 = - 980 N + F N F N = 980 N upwards
  5. The normal force is 980 N upwards. It exactly balances the gravitational force downwards so there is no net force and no acceleration on the man. The reading on the scale is 980 N.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 physical science. OpenStax CNX. Jul 29, 2011 Download for free at http://cnx.org/content/col11241/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 physical science' conversation and receive update notifications?

Ask