<< Chapter < Page | Chapter >> Page > |
If a planet with 1.5 times the mass of Earth was traveling in Earth’s orbit, what would its period be?
Two planets in circular orbits around a star have speeds of v and 2 v . (a) What is the ratio of the orbital radii of the planets? (b) What is the ratio of their periods?
a. 0.25; b. 0.125
Using the average distance of Earth from the Sun, and the orbital period of Earth, (a) find the centripetal acceleration of Earth in its motion about the Sun. (b) Compare this value to that of the centripetal acceleration at the equator due to Earth’s rotation.
What is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?
a. ; b. This less than the radius of Earth.
Calculate the mass of the Sun based on data for Earth’s orbit and compare the value obtained with the Sun’s actual mass.
Find the mass of Jupiter based on the fact that Io, its innermost moon, has an average orbital radius of 421,700 km and a period of 1.77 days.
Astronomical observations of our Milky Way galaxy indicate that it has a mass of about solar masses. A star orbiting on the galaxy’s periphery is about light-years from its center. (a) What should the orbital period of that star be? (b) If its period is years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way.
(a) In order to keep a small satellite from drifting into a nearby asteroid, it is placed in orbit with a period of 3.02 hours and radius of 2.0 km. What is the mass of the asteroid? (b) Does this mass seem reasonable for the size of the orbit?
a. ; b. The satellite must be outside the radius of the asteroid, so it can’t be larger than this. If it were this size, then its density would be about . This is just above that of water, so this seems quite reasonable.
The Moon and Earth rotate about their common center of mass, which is located about 4700 km from the center of Earth. (This is 1690 km below the surface.) (a) Calculate the acceleration due to the Moon’s gravity at that point. (b) Calculate the centripetal acceleration of the center of Earth as it rotates about that point once each lunar month (about 27.3 d) and compare it with the acceleration found in part (a). Comment on whether or not they are equal and why they should or should not be.
The Sun orbits the Milky Way galaxy once each , with a roughly circular orbit averaging a radius of light-years. (A light-year is the distance traveled by light in 1 year.) Calculate the centripetal acceleration of the Sun in its galactic orbit. Does your result support the contention that a nearly inertial frame of reference can be located at the Sun? (b) Calculate the average speed of the Sun in its galactic orbit. Does the answer surprise you?
a. ; Yes, the centripetal acceleration is so small it supports the contention that a nearly inertial frame of reference can be located at the Sun. b.
A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for communication and weather observation because the satellite remains above the same point on Earth (provided it orbits in the equatorial plane in the same direction as Earth’s rotation). Calculate the radius of such an orbit based on the data for Earth in Appendix D .
Notification Switch
Would you like to follow the 'University physics volume 1' conversation and receive update notifications?