<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the meaning of “conservation of momentum”
  • Correctly identify if a system is, or is not, closed
  • Define a system whose momentum is conserved
  • Mathematically express conservation of momentum for a given system
  • Calculate an unknown quantity using conservation of momentum

Recall Newton’s third law: When two objects of masses m 1 and m 2 interact (meaning that they apply forces on each other), the force that object 2 applies to object 1 is equal in magnitude and opposite in direction to the force that object 1 applies on object 2. Let:

  • F 21 = the force on m 1 from m 2
  • F 12 = the force on m 2 from m 1

Then, in symbols, Newton’s third law says

F 21 = F 12 m 1 a 1 = m 2 a 2 .

(Recall that these two forces do not cancel because they are applied to different objects. F 21 causes m 1 to accelerate, and F 12 causes m 2 to accelerate.)

Although the magnitudes of the forces on the objects are the same, the accelerations are not, simply because the masses (in general) are different. Therefore, the changes in velocity of each object are different:

d v 1 d t d v 2 d t .

However, the products of the mass and the change of velocity are equal (in magnitude):

m 1 d v 1 d t = m 2 d v 2 d t .

It’s a good idea, at this point, to make sure you’re clear on the physical meaning of the derivatives in [link] . Because of the interaction, each object ends up getting its velocity changed, by an amount dv . Furthermore, the interaction occurs over a time interval dt , which means that the change of velocities also occurs over dt . This time interval is the same for each object.

Let‘s assume, for the moment, that the masses of the objects do not change during the interaction. (We’ll relax this restriction later.) In that case, we can pull the masses inside the derivatives:

d d t ( m 1 v 1 ) = d d t ( m 2 v 2 )

and thus

d p 1 d t = d p 2 d t .

This says that the rate at which momentum changes is the same for both objects. The masses are different, and the changes of velocity are different, but the rate of change of the product of m and v are the same.

Physically, this means that during the interaction of the two objects ( m 1 and m 2 ), both objects have their momentum changed; but those changes are identical in magnitude, though opposite in sign. For example, the momentum of object 1 might increase, which means that the momentum of object 2 decreases by exactly the same amount.

In light of this, let’s re-write [link] in a more suggestive form:

d p 1 d t + d p 2 d t = 0 .

This says that during the interaction, although object 1’s momentum changes, and object 2’s momentum also changes, these two changes cancel each other out, so that the total change of momentum of the two objects together is zero.

Since the total combined momentum of the two objects together never changes, then we could write

d d t ( p 1 + p 2 ) = 0

from which it follows that

p 1 + p 2 = constant .

As shown in [link] , the total momentum of the system before and after the collision remains the same.

Before collision yellow ball1 is moving down and to the right, aiming at the center of blue ball 2. Blue ball 2 is moving to the left and slightly down, and more slowly than ball 1. We are told that p total vector equals p 1 vector plus p 2 vector and we are shown the sum as a vector diagram: p 1 and p 2 are placed with the tail of p 2 at the head of p 1. A vector is drawn from the tail of p 1 to the head of p 2. After the collision, the yellow ball is moving slowly to the right and p 2 is moving more rapidly down and to the left. We are told that p prime total vector equals p prime 1 vector plus p prime 2 vector and we are shown the sum as a vector diagram: p prime 1 and p prime 2 are placed with the tail of p prime 2 at the head of p prime 1. A vector is drawn from the tail of p prime 1 to the head of p prime 2 and is the same length and in the same direction as the sum vector before collision.
Before the collision, the two billiard balls travel with momenta p 1 and p 3 . The total momentum of the system is the sum of these, as shown by the red vector labeled p total on the left. After the collision, the two billiard balls travel with different momenta p 1 and p 3 . The total momentum, however, has not changed, as shown by the red vector arrow p total on the right.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask