<< Chapter < Page Chapter >> Page >
By the end of the section, you will be able to:
  • Explain the equation for centripetal acceleration
  • Apply Newton’s second law to develop the equation for centripetal force
  • Use circular motion concepts in solving problems involving Newton’s laws of motion

In Motion in Two and Three Dimensions , we examined the basic concepts of circular motion. An object undergoing circular motion, like one of the race cars shown at the beginning of this chapter, must be accelerating because it is changing the direction of its velocity. We proved that this centrally directed acceleration, called centripetal acceleration    , is given by the formula

a c = v 2 r

where v is the velocity of the object, directed along a tangent line to the curve at any instant. If we know the angular velocity ω , then we can use

a c = r ω 2 .

Angular velocity gives the rate at which the object is turning through the curve, in units of rad/s. This acceleration acts along the radius of the curved path and is thus also referred to as a radial acceleration.

An acceleration must be produced by a force. Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope on a tether ball, the force of Earth’s gravity on the Moon, friction between roller skates and a rink floor, a banked roadway’s force on a car, and forces on the tube of a spinning centrifuge. Any net force causing uniform circular motion is called a centripetal force    . The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration. According to Newton’s second law of motion, net force is mass times acceleration: F net = m a . For uniform circular motion, the acceleration is the centripetal acceleration: . a = a c . Thus, the magnitude of centripetal force F c is

F c = m a c .

By substituting the expressions for centripetal acceleration a c ( a c = v 2 r ; a c = r ω 2 ) , we get two expressions for the centripetal force F c in terms of mass, velocity, angular velocity, and radius of curvature:

F c = m v 2 r ; F c = m r ω 2 .

You may use whichever expression for centripetal force is more convenient. Centripetal force F c is always perpendicular to the path and points to the center of curvature, because a c is perpendicular to the velocity and points to the center of curvature. Note that if you solve the first expression for r , you get

r = m v 2 F c .

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve, as in [link] .

The figure consists of two semicircles. The semicircle on the left has radius r and bigger than the one on the right, which has radius r prime. In both the figures, the direction of the motion is given as counter-clockwise along the semicircles. A point is shown on the path, where the radius is shown with an arrow pointing out from the center of the semicircle. At the same point, the centripetal force, F sub c, is shown pointing inward, in the opposite direction to that of radius arrow. The velocity, v, is shown at this point as well, and it is tangent to the semicircle, pointing left and up, perpendicular to the forces. In both the figures, the velocity is same, but the radius prime is smaller and centripetal force is larger in the figure on the right. It is noted that vector F sub c is parallel to vector a sub c since vector F sub c equals m times vector a sub c.
The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity and causes uniform circular motion. The larger the F c , the smaller the radius of curvature r and the sharper the curve. The second curve has the same v , but a larger F c produces a smaller r ′.

What coefficient of friction do cars need on a flat curve?

(a) Calculate the centripetal force exerted on a 900.0-kg car that negotiates a 500.0-m radius curve at 25.00 m/s. (b) Assuming an unbanked curve, find the minimum static coefficient of friction between the tires and the road, static friction being the reason that keeps the car from slipping ( [link] ).

Questions & Answers

profit maximize for monopolistically?
Usman Reply
what kind of demand curve under monopoly?
Mik Reply
what is the difference between inflation and scarcity ?
Abdu Reply
What stops oligopolists from acting together as a monopolist and earning the highest possible level of profits?
Mik
why economics is difficult for 2nd school students.
Siraj Reply
what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask