<< Chapter < Page Chapter >> Page >

The direction of F D has already been determined to be in the direction opposite to F app , or at an angle of 53 ° south of west.

Significance

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively small for a well-designed hull at low speeds, consistent with the answer to this example, where F D is less than 1/600th of the weight of the ship.

In Newton’s Laws of Motion , we discussed the normal force    , which is a contact force that acts normal to the surface so that an object does not have an acceleration perpendicular to the surface. The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a constant speed? Take a guess before reading the next example.

What does the bathroom scale read in an elevator?

[link] shows a 75.0-kg man (weight of about 165 lb.) standing on a bathroom scale in an elevator. Calculate the scale reading: (a) if the elevator accelerates upward at a rate of 1.20 m/s 2 , and (b) if the elevator moves upward at a constant speed of 1 m/s.

A person is standing on a bathroom scale in an elevator. His weight w is shown by an arrow near his chest, pointing downward. F sub s is the force of the scale on the person, shown by a vector starting from his feet pointing vertically upward. W sub s is the weight of the scale, shown by a vector starting at the scale pointing pointing vertically downward. W sub e is the weight of the elevator, shown by a broken arrow starting at the bottom of the elevator pointing vertically downward. F sub p is the force of the person on the scale, drawn starting at the scale and pointing vertically downward. F sub t is the force of the scale on the floor of the elevator, pointing vertically downward, and N is the normal force of the floor on the scale, starting on the elevator near the scale pointing upward. (b) The same person is shown on the scale in the elevator, but only a few forces are shown acting on the person, which is our system of interest. W is shown by an arrow acting downward, and F sub s is the force of the scale on the person, shown by a vector starting from his feet pointing vertically upward. The free-body diagram is also shown, with two forces acting on a point. F sub s acts vertically upward, and w acts vertically downward. An x y coordinate system is shown, with positive x to the right and positive y upward.
(a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are approximately correct for when the elevator is accelerating upward—broken arrows represent forces too large to be drawn to scale. T is the tension in the supporting cable, w is the weight of the person, w s is the weight of the scale, w e is the weight of the elevator, F s is the force of the scale on the person, F p is the force of the person on the scale, F t is the force of the scale on the floor of the elevator, and N is the force of the floor upward on the scale. (b) The free-body diagram shows only the external forces acting on the designated system of interest—the person—and is the diagram we use for the solution of the problem.

Strategy

If the scale at rest is accurate, its reading equals F p , the magnitude of the force the person exerts downward on it. [link] (a) shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn, as in [link] (b). Analysis of the free-body diagram using Newton’s laws can produce answers to both [link] (a) and (b) of this example, as well as some other questions that might arise. The only forces acting on the person are his weight w and the upward force of the scale F s . According to Newton’s third law, F p and F s are equal in magnitude and opposite in direction, so that we need to find F s in order to find what the scale reads. We can do this, as usual, by applying Newton’s second law,

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask