<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Derive the kinematic equations for constant acceleration using integral calculus.
  • Use the integral formulation of the kinematic equations in analyzing motion.
  • Find the functional form of velocity versus time given the acceleration function.
  • Find the functional form of position versus time given the velocity function.

This section assumes you have enough background in calculus to be familiar with integration. In Instantaneous Velocity and Speed and Average and Instantaneous Acceleration we introduced the kinematic functions of velocity and acceleration using the derivative. By taking the derivative of the position function we found the velocity function, and likewise by taking the derivative of the velocity function we found the acceleration function. Using integral calculus, we can work backward and calculate the velocity function from the acceleration function, and the position function from the velocity function.

Kinematic equations from integral calculus

Let’s begin with a particle with an acceleration a (t) is a known function of time. Since the time derivative of the velocity function is acceleration,

d d t v ( t ) = a ( t ) ,

we can take the indefinite integral of both sides, finding

d d t v ( t ) d t = a ( t ) d t + C 1 ,

where C 1 is a constant of integration. Since d d t v ( t ) d t = v ( t ) , the velocity is given by

v ( t ) = a ( t ) d t + C 1 .

Similarly, the time derivative of the position function is the velocity function,

d d t x ( t ) = v ( t ) .

Thus, we can use the same mathematical manipulations we just used and find

x ( t ) = v ( t ) d t + C 2 ,

where C 2 is a second constant of integration.

We can derive the kinematic equations for a constant acceleration using these integrals. With a ( t ) = a a constant, and doing the integration in [link] , we find

v ( t ) = a d t + C 1 = a t + C 1 .

If the initial velocity is v (0) = v 0 , then

v 0 = 0 + C 1 .

Then, C 1 = v 0 and

v ( t ) = v 0 + a t ,

which is [link] . Substituting this expression into [link] gives

x ( t ) = ( v 0 + a t ) d t + C 2 .

Doing the integration, we find

x ( t ) = v 0 t + 1 2 a t 2 + C 2 .

If x (0) = x 0 , we have

x 0 = 0 + 0 + C 2 ;

so, C 2 = x 0 . Substituting back into the equation for x ( t ), we finally have

x ( t ) = x 0 + v 0 t + 1 2 a t 2 ,

which is [link] .

Motion of a motorboat

A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is a ( t ) = 1 4 t m/ s 2 . (a) What is the velocity function of the motorboat? (b) At what time does the velocity reach zero? (c) What is the position function of the motorboat? (d) What is the displacement of the motorboat from the time it begins to decelerate to when the velocity is zero? (e) Graph the velocity and position functions.

Strategy

(a) To get the velocity function we must integrate and use initial conditions to find the constant of integration. (b) We set the velocity function equal to zero and solve for t . (c) Similarly, we must integrate to find the position function and use initial conditions to find the constant of integration. (d) Since the initial position is taken to be zero, we only have to evaluate the position function at t = 0 .

Solution

We take t = 0 to be the time when the boat starts to decelerate.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask