<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe vectors in two and three dimensions in terms of their components, using unit vectors along the axes.
  • Distinguish between the vector components of a vector and the scalar components of a vector.
  • Explain how the magnitude of a vector is defined in terms of the components of a vector.
  • Identify the direction angle of a vector in a plane.
  • Explain the connection between polar coordinates and Cartesian coordinates in a plane.

Vectors are usually described in terms of their components in a coordinate system . Even in everyday life we naturally invoke the concept of orthogonal projections in a rectangular coordinate system. For example, if you ask someone for directions to a particular location, you will more likely be told to go 40 km east and 30 km north than 50 km in the direction 37 ° north of east.

In a rectangular (Cartesian) xy -coordinate system in a plane, a point in a plane is described by a pair of coordinates ( x , y ). In a similar fashion, a vector A in a plane is described by a pair of its vector coordinates. The x -coordinate of vector A is called its x -component and the y -coordinate of vector A is called its y -component. The vector x -component is a vector denoted by A x . The vector y -component is a vector denoted by A y . In the Cartesian system, the x and y vector components    of a vector are the orthogonal projections of this vector onto the x - and y -axes, respectively. In this way, following the parallelogram rule for vector addition, each vector on a Cartesian plane can be expressed as the vector sum of its vector components:

A = A x + A y .

As illustrated in [link] , vector A is the diagonal of the rectangle where the x -component A x is the side parallel to the x -axis and the y -component A y is the side parallel to the y -axis. Vector component A x is orthogonal to vector component A y .

Vector A is shown in the x y coordinate system and extends from point b at A’s tail to point e and its head. Vector A points up and to the right. Unit vectors I hat and j hat are small vectors pointing in the x and y directions, respectively, and are at right angles to each other. The x component of vector A is a vector pointing horizontally from the point b to a point directly below point e at the tip of vector A. On the x axis, we see that the vector A sub x extends from x sub b to x sub e and is equal to magnitude A sub x times I hat. The magnitude A sub x equals x sub e minus x sub b. The y component of vector A is a vector pointing vertically from point b to a point directly to the left of point e at the tip of vector A. On the y axis, we see that the vector A sub y extends from y sub b to y sub e and is equal to magnitude A sub y times j hat. The magnitude A sub y equals y sub e minus y sub b.
Vector A in a plane in the Cartesian coordinate system is the vector sum of its vector x - and y -components. The x -vector component A x is the orthogonal projection of vector A onto the x -axis. The y -vector component A y is the orthogonal projection of vector A onto the y -axis. The numbers A x and A y that multiply the unit vectors are the scalar components of the vector.

It is customary to denote the positive direction on the x -axis by the unit vector i ^ and the positive direction on the y -axis by the unit vector j ^ . Unit vectors of the axes , i ^ and j ^ , define two orthogonal directions in the plane. As shown in [link] , the x - and y - components of a vector can now be written in terms of the unit vectors of the axes:

{ A x = A x i ^ A y = A y j ^ .

The vectors A x and A y defined by [link] are the vector components of vector A . The numbers A x and A y that define the vector components in [link] are the scalar component     s of vector A . Combining [link] with [link] , we obtain the component form of a vector :

A = A x i ^ + A y j ^ .

If we know the coordinates b ( x b , y b ) of the origin point of a vector (where b stands for “beginning”) and the coordinates e ( x e , y e ) of the end point of a vector (where e stands for “end”), we can obtain the scalar components of a vector simply by subtracting the origin point coordinates from the end point coordinates:

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask