<< Chapter < Page Chapter >> Page >
Picture A is a drawing of a parked car that is a source of sound-waves and two non-moving people who act as observers. Picture A is a drawing of a moving car that is a source of sound-waves and two non-moving people who act as observers. Picture C is a drawing of a moving car that is a source of sound-waves and two moving people who act as observers.
Sounds emitted by a source spread out in spherical waves. (a) When the source, observers, and air are stationary, the wavelength and frequency are the same in all directions and to all observers. (b) Sounds emitted by a source moving to the right spread out from the points at which they were emitted. The wavelength is reduced, and consequently, the frequency is increased in the direction of motion, so that the observer on the right hears a higher-pitched sound. The opposite is true for the observer on the left, where the wavelength is increased and the frequency is reduced. (c) The same effect is produced when the observers move relative to the source. Motion toward the source increases frequency as the observer on the right passes through more wave crests than she would if stationary. Motion away from the source decreases frequency as the observer on the left passes through fewer wave crests than he would if stationary.

We know that wavelength and frequency are related by v = f λ , where v is the fixed speed of sound. The sound moves in a medium and has the same speed v in that medium whether the source is moving or not. Thus, f multiplied by λ is a constant. Because the observer on the right in case (b) receives a shorter wavelength, the frequency she receives must be higher. Similarly, the observer on the left receives a longer wavelength, and hence he hears a lower frequency. The same thing happens in case (c). A higher frequency is received by the observer moving toward the source, and a lower frequency is received by an observer moving away from the source. In general, then, relative motion of source and observer toward one another increases the received frequency. Relative motion apart decreases frequency. The greater the relative speed, the greater the effect.

The Doppler effect occurs not only for sound, but for any wave when there is relative motion between the observer and the source. Doppler shifts occur in the frequency of sound, light, and water waves, for example. Doppler shifts can be used to determine velocity, such as when ultrasound is reflected from blood in a medical diagnostic. The relative velocities of stars and galaxies is determined by the shift in the frequencies of light received from them and has implied much about the origins of the universe. Modern physics has been profoundly affected by observations of Doppler shifts.

Derivation of the observed frequency due to the doppler shift

Consider two stationary observers X and Y in [link] , located on either side of a stationary source. Each observer hears the same frequency, and that frequency is the frequency produced by the stationary source.

Picture is a drawing of a stationary source that sends out sound waves at a constant frequency, with a constant wavelength at the speed of sound. Two stationary observers at the opposite sides of the source record waves.
A stationary source sends out sound waves at a constant frequency f s , with a constant wavelength λ s , at the speed of sound v . Two stationary observers X and Y , on either side of the source, observe a frequency f o = f s , with a wavelength λ o = λ s .

Now consider a stationary observer X with a source moving away from the observer with a constant speed v s < v ( [link] ). At time t = 0 , the source sends out a sound wave, indicated in black. This wave moves out at the speed of sound v . The position of the sound wave at each time interval of period T s is shown as dotted lines. After one period, the source has moved Δ x = v s T s and emits a second sound wave, which moves out at the speed of sound. The source continues to move and produce sound waves, as indicated by the circles numbered 3 and 4. Notice that as the waves move out, they remained centered at their respective point of origin.

Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask