<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the physics of rolling motion without slipping
  • Explain how linear variables are related to angular variables for the case of rolling motion without slipping
  • Find the linear and angular accelerations in rolling motion with and without slipping
  • Calculate the static friction force associated with rolling motion without slipping
  • Use energy conservation to analyze rolling motion

Rolling motion is that common combination of rotational and translational motion that we see everywhere, every day. Think about the different situations of wheels moving on a car along a highway, or wheels on a plane landing on a runway, or wheels on a robotic explorer on another planet. Understanding the forces and torques involved in rolling motion    is a crucial factor in many different types of situations.

For analyzing rolling motion in this chapter, refer to [link] in Fixed-Axis Rotation to find moments of inertia of some common geometrical objects. You may also find it useful in other calculations involving rotation.

Rolling motion without slipping

People have observed rolling motion without slipping ever since the invention of the wheel. For example, we can look at the interaction of a car’s tires and the surface of the road. If the driver depresses the accelerator to the floor, such that the tires spin without the car moving forward, there must be kinetic friction between the wheels and the surface of the road. If the driver depresses the accelerator slowly, causing the car to move forward, then the tires roll without slipping. It is surprising to most people that, in fact, the bottom of the wheel is at rest with respect to the ground, indicating there must be static friction between the tires and the road surface. In [link] , the bicycle is in motion with the rider staying upright. The tires have contact with the road surface, and, even though they are rolling, the bottoms of the tires deform slightly, do not slip, and are at rest with respect to the road surface for a measurable amount of time. There must be static friction between the tire and the road surface for this to be so.

Figure a is a photograph of a person riding a bicycle. The camera followed the bike, so the image of the bike and rider is sharp, the background is blurred due to bike’s motion. Figure b is a photograph of a bicycle wheel rolling on the ground, with the camera stationary relative to the ground. The wheel and spokes are blurred at the top but clear at the bottom.
(a) The bicycle moves forward, and its tires do not slip. The bottom of the slightly deformed tire is at rest with respect to the road surface for a measurable amount of time. (b) This image shows that the top of a rolling wheel appears blurred by its motion, but the bottom of the wheel is instantaneously at rest. (credit a: modification of work by Nelson Lourenço; credit b: modification of work by Colin Rose)

To analyze rolling without slipping, we first derive the linear variables of velocity and acceleration of the center of mass of the wheel in terms of the angular variables that describe the wheel’s motion. The situation is shown in [link] .

Figure a shows a free body diagram of a wheel, including the location where the forces act. Four forces are shown: M g is a downward force acting on the center of the wheel. N is an upward force acting on the bottom of the wheel. F is a force to the right, acting on the center of the wheel, and f sub s is a force to the left acting on the bottom of the wheel. The force f sub s is smaller or equal to mu sub s times N. Figure b is an illustration of a wheel rolling without slipping on a horizontal surface. Point P is the contact point between the bottom of the wheel and the surface. The wheel has a clockwise rotation, an acceleration to the right of a sub C M and a velocity to the right of v sub V M. The relations omega equals v sub C M over R and alpha equals a sub C M over R are given. A coordinate system with positive x to the right and positive y up is shown. Figure c shows wheel in the center of mass frame. Point P has velocity vector in the negative direction with respect to the center of mass of the wheel. That vector is shown on the diagram and labeled as minus R omega i hat. It is tangent to the wheel at the bottom, and pointing to the left. Additional vectors at various locations on the rim of the wheel are shown, all tangent to the wheel and pointing clockwise.
(a) A wheel is pulled across a horizontal surface by a force F . The force of static friction f S , | f S | μ S N is large enough to keep it from slipping. (b) The linear velocity and acceleration vectors of the center of mass and the relevant expressions for ω and α . Point P is at rest relative to the surface. (c) Relative to the center of mass (CM) frame, point P has linear velocity R ω i ^ .

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask