<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Use the work-energy theorem to analyze rotation to find the work done on a system when it is rotated about a fixed axis for a finite angular displacement
  • Solve for the angular velocity of a rotating rigid body using the work-energy theorem
  • Find the power delivered to a rotating rigid body given the applied torque and angular velocity
  • Summarize the rotational variables and equations and relate them to their translational counterparts

Thus far in the chapter, we have extensively addressed kinematics and dynamics for rotating rigid bodies around a fixed axis. In this final section, we define work and power within the context of rotation about a fixed axis, which has applications to both physics and engineering. The discussion of work and power makes our treatment of rotational motion almost complete, with the exception of rolling motion and angular momentum, which are discussed in Angular Momentum . We begin this section with a treatment of the work-energy theorem for rotation.

Work for rotational motion

Now that we have determined how to calculate kinetic energy for rotating rigid bodies, we can proceed with a discussion of the work done on a rigid body rotating about a fixed axis. [link] shows a rigid body that has rotated through an angle d θ from A to B while under the influence of a force F . The external force F is applied to point P , whose position is r , and the rigid body is constrained to rotate about a fixed axis that is perpendicular to the page and passes through O . The rotational axis is fixed, so the vector r moves in a circle of radius r , and the vector d s is perpendicular to r .

Figure shows the rigid body is constrained to rotate about a fixed axis that is perpendicular to the page and passes through a point labeled as O. The rotational axis is fixed, so the vector r moves in a circle of radius r, and the vector ds is perpendicular to vector r. An external force F is applied to point P and makes rigid body rotates through an angle dtheta.
A rigid body rotates through an angle d θ from A to B by the action of an external force F applied to point P .

From [link] , we have

s = θ × r .

Thus,

d s = d ( θ × r ) = d θ × r + d r × θ = d θ × r .

Note that d r is zero because r is fixed on the rigid body from the origin O to point P . Using the definition of work, we obtain

W = F · d s = F · ( d θ × r ) = d θ · ( r × F )

where we used the identity a · ( b × c ) = b · ( c × a ) . Noting that ( r × F ) = τ , we arrive at the expression for the rotational work    done on a rigid body:

W = τ · d θ .

The total work done on a rigid body is the sum of the torques integrated over the angle through which the body rotates . The incremental work is

d W = ( i τ i ) d θ

where we have taken the dot product in [link] , leaving only torques along the axis of rotation. In a rigid body, all particles rotate through the same angle; thus the work of every external force is equal to the torque times the common incremental angle d θ . The quantity ( i τ i ) is the net torque on the body due to external forces.

Similarly, we found the kinetic energy of a rigid body rotating around a fixed axis by summing the kinetic energy of each particle that makes up the rigid body. Since the work-energy theorem W i = Δ K i is valid for each particle, it is valid for the sum of the particles and the entire body.

Work-energy theorem for rotation

The work-energy theorem for a rigid body rotating around a fixed axis is

W A B = K B K A

where

K = 1 2 I ω 2

and the rotational work done by a net force rotating a body from point A to point B is

W A B = θ A θ B ( i τ i ) d θ .

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask