<< Chapter < Page Chapter >> Page >

Solution for (a)

  1. Identify the knowns. v = 0 . 990 c size 12{v=0 "." "990"c} {} ; m = 9 . 11 × 10 31 kg size 12{m=9 "." "11" times "10" rSup { size 8{ - "31"} } `"kg"} {}
  2. Identify the unknown. KE rel size 12{"KE" rSub { size 8{"rel"} } } {}
  3. Choose the appropriate equation. KE rel = γ 1 mc 2 size 12{"KE" rSub { size 8{"rel"} } = left (γ - 1 right ) ital "mc" rSup { size 8{2} } } {}
  4. Plug the knowns into the equation.

    First calculate γ size 12{γ} {} . We will carry extra digits because this is an intermediate calculation.

    γ = 1 1 v 2 c 2 = 1 1 ( 0 . 990 c ) 2 c 2 = 1 1 ( 0 . 990 ) 2 = 7 . 0888 alignl { stack { size 12{γ= { {1} over { sqrt {1 - { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } } {} #= { {1} over { sqrt {1 - { { \( 0 "." "990" ital " c" \) rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } {} # - { {1} over { sqrt {1 - \( 0 "." "990" \) rSup { size 8{2} } } } } {} #=7 "." "0888" {} } } {}

    Next, we use this value to calculate the kinetic energy.

    KE rel = ( γ 1 ) mc 2 = ( 7.0888 1 ) ( 9.11 × 10 31 kg ) ( 3.00 × 10 8 m/s ) 2 = 4.99 × 10 –13 J
  5. Convert units.
    KE rel = ( 4.99 × 10 –13 J ) 1 MeV 1.60 × 10 13 J = 3.12 MeV alignl { stack { size 12{"KE" rSub { size 8{"rel"} } = \( 4 "." "99" times "10" rSup { size 8{"-13"} } " J" \) left ( { {"1 MeV"} over {1 "." "60" times "10" rSup { size 8{ - "13"} } " J"} } right )} {} #=3 "." "12"" MeV" {} } } {}

Solution for (b)

  1. List the knowns. v = 0 . 990 c size 12{v=0 "." "990"c} {} ; m = 9 . 11 × 10 31 kg
  2. List the unknown. KE class
  3. Choose the appropriate equation. KE class = 1 2 mv 2
  4. Plug the knowns into the equation.
    KE class = 1 2 mv 2 = 1 2 ( 9.00 × 10 31 kg ) ( 0.990 ) 2 ( 3.00 × 10 8 m/s ) 2 = 4.02 × 10 14 J
  5. Convert units.
    KE class = 4.02 × 10 14 J 1 MeV 1.60 × 10 13 J = 0.251 MeV

Discussion

As might be expected, since the velocity is 99.0% of the speed of light, the classical kinetic energy is significantly off from the correct relativistic value. Note also that the classical value is much smaller than the relativistic value. In fact, KE rel /KE class = 12 . 4 size 12{"KE" rSub { size 8{"rel"} } "/KE" rSub { size 8{"class"} } ="12" "." 4} {} here. This is some indication of how difficult it is to get a mass moving close to the speed of light. Much more energy is required than predicted classically. Some people interpret this extra energy as going into increasing the mass of the system, but, as discussed in Relativistic Momentum , this cannot be verified unambiguously. What is certain is that ever-increasing amounts of energy are needed to get the velocity of a mass a little closer to that of light. An energy of 3 MeV is a very small amount for an electron, and it can be achieved with present-day particle accelerators. SLAC, for example, can accelerate electrons to over 50 × 10 9 eV = 50,000 MeV size 12{"50" times "10" rSup { size 8{9} } "eV"="50,000"`"MeV"} {} .

Is there any point in getting v size 12{v} {} a little closer to c than 99.0% or 99.9%? The answer is yes. We learn a great deal by doing this. The energy that goes into a high-velocity mass can be converted to any other form, including into entirely new masses. (See [link] .) Most of what we know about the substructure of matter and the collection of exotic short-lived particles in nature has been learned this way. Particles are accelerated to extremely relativistic energies and made to collide with other particles, producing totally new species of particles. Patterns in the characteristics of these previously unknown particles hint at a basic substructure for all matter. These particles and some of their characteristics will be covered in Particle Physics .

An aerial view of the Fermi National Accelerator Laboratory. The accelerator has two large, ring shaped structures. There are circular ponds near the rings.
The Fermi National Accelerator Laboratory, near Batavia, Illinois, was a subatomic particle collider that accelerated protons and antiprotons to attain energies up to 1 Tev (a trillion electronvolts). The circular ponds near the rings were built to dissipate waste heat. This accelerator was shut down in September 2011. (credit: Fermilab, Reidar Hahn)

Relativistic energy and momentum

We know classically that kinetic energy and momentum are related to each other, since

KE class = p 2 2 m = ( mv ) 2 2 m = 1 2 mv 2 .

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating their definitions. This produces

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask