<< Chapter < Page Chapter >> Page >

Since changing electric fields create relatively weak magnetic fields, they could not be easily detected at the time of Maxwell’s hypothesis. Maxwell realized, however, that oscillating charges, like those in AC circuits, produce changing electric fields. He predicted that these changing fields would propagate from the source like waves generated on a lake by a jumping fish.

The waves predicted by Maxwell would consist of oscillating electric and magnetic fields—defined to be an electromagnetic wave (EM wave). Electromagnetic waves would be capable of exerting forces on charges great distances from their source, and they might thus be detectable. Maxwell calculated that electromagnetic waves would propagate at a speed given by the equation

c = 1 μ 0 ε 0 . size 12{"c "= { {1} over { sqrt {μ rSub { size 8{0} } ε rSub { size 8{0} } } } } } {}

When the values for μ 0 size 12{μ rSub { size 8{0} } } {} and ε 0 size 12{ε rSub { size 8{0} } } {} are entered into the equation for c , we find that

c = 1 ( 8 . 85 × 10 12 C 2 N m 2 ) ( × 10 7 T m A ) = 3 . 00 × 10 8 m/s , size 12{"c "= { {1} over { sqrt { \( 8 "." "85" times "10" rSup { size 8{-"12"} } { {C rSup { size 8{2} } } over {N cdot m rSup { size 8{2} } } } \) \( 4π´"10" rSup { size 8{-7} } { {T cdot m} over {A} } \) } } } =" 3" "." "00"´" 10" rSup { size 8{8} } " m/s"} {}

which is the speed of light. In fact, Maxwell concluded that light is an electromagnetic wave having such wavelengths that it can be detected by the eye.

Other wavelengths should exist—it remained to be seen if they did. If so, Maxwell’s theory and remarkable predictions would be verified, the greatest triumph of physics since Newton. Experimental verification came within a few years, but not before Maxwell’s death.

Hertz’s observations

The German physicist Heinrich Hertz (1857–1894) was the first to generate and detect certain types of electromagnetic waves in the laboratory. Starting in 1887, he performed a series of experiments that not only confirmed the existence of electromagnetic waves, but also verified that they travel at the speed of light.

Hertz used an AC RLC size 12{ ital "RLC"} {} (resistor-inductor-capacitor) circuit that resonates at a known frequency f 0 = 1 LC size 12{f rSub { size 8{0} } = { {1} over {2π sqrt { ital "LC"} } } } {} and connected it to a loop of wire as shown in [link] . High voltages induced across the gap in the loop produced sparks that were visible evidence of the current in the circuit and that helped generate electromagnetic waves.

Across the laboratory, Hertz had another loop attached to another RLC size 12{ ital "RLC"} {} circuit, which could be tuned (as the dial on a radio) to the same resonant frequency as the first and could, thus, be made to receive electromagnetic waves. This loop also had a gap across which sparks were generated, giving solid evidence that electromagnetic waves had been received.

The circuit diagram shows a simple circuit containing an alternating voltage source, a resistor R, capacitor C and a transformer, which provides the impedance. The transformer is shown to consist of two coils separated by a core. In parallel with the transformer is connected a wire loop labeled as Loop one Transmitter with a small gap that creates sparks across the gap. The sparks create electromagnetic waves, which are transmitted through the air to a similar loop next to it labeled as Loop two Receiver. These waves induce sparks in Loop two, and are detected by the tuner shown as a rectangular box connected to it.
The apparatus used by Hertz in 1887 to generate and detect electromagnetic waves. An RLC size 12{ ital "RLC"} {} circuit connected to the first loop caused sparks across a gap in the wire loop and generated electromagnetic waves. Sparks across a gap in the second loop located across the laboratory gave evidence that the waves had been received.

Hertz also studied the reflection, refraction, and interference patterns of the electromagnetic waves he generated, verifying their wave character. He was able to determine wavelength from the interference patterns, and knowing their frequency, he could calculate the propagation speed using the equation υ = size 12{υ=fλ} {} (velocity—or speed—equals frequency times wavelength). Hertz was thus able to prove that electromagnetic waves travel at the speed of light. The SI unit for frequency, the hertz ( 1 Hz = 1 cycle/sec size 12{1" Hz"=1" cycle/sec"} {} ), is named in his honor.

Section summary

  • Electromagnetic waves consist of oscillating electric and magnetic fields and propagate at the speed of light c . They were predicted by Maxwell, who also showed that
    c = 1 μ 0 ε 0 , size 12{"c "= { {1} over { sqrt {μ rSub { size 8{0} } ε rSub { size 8{0} } } } } } {}

    where μ 0 size 12{μ rSub { size 8{0} } } {} is the permeability of free space and ε 0 size 12{ε rSub { size 8{0} } } {} is the permittivity of free space.

  • Maxwell’s prediction of electromagnetic waves resulted from his formulation of a complete and symmetric theory of electricity and magnetism, known as Maxwell’s equations.
  • These four equations are paraphrased in this text, rather than presented numerically, and encompass the major laws of electricity and magnetism. First is Gauss’s law for electricity, second is Gauss’s law for magnetism, third is Faraday’s law of induction, including Lenz’s law, and fourth is Ampere’s law in a symmetric formulation that adds another source of magnetism—changing electric fields.

Problems&Exercises

Verify that the correct value for the speed of light c is obtained when numerical values for the permeability and permittivity of free space ( μ 0 size 12{μ rSub { size 8{0} } } {} and ε 0 size 12{ε rSub { size 8{0} } } {} ) are entered into the equation c = 1 μ 0 ε 0 size 12{"c "= { {1} over { sqrt {μ rSub { size 8{0} } ε rSub { size 8{0} } } } } } {} .

Got questions? Get instant answers now!

Show that, when SI units for μ 0 size 12{μ rSub { size 8{0} } } {} and ε 0 size 12{ε rSub { size 8{0} } } {} are entered, the units given by the right-hand side of the equation in the problem above are m/s.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask