<< Chapter < Page Chapter >> Page >
  • Describe proper length.
  • Calculate length contraction.
  • Explain why we don’t notice these effects at everyday scales.
A long isolated double-lane road banked by barren land on both sides.
People might describe distances differently, but at relativistic speeds, the distances really are different. (credit: Corey Leopold, Flickr)

Have you ever driven on a road that seems like it goes on forever? If you look ahead, you might say you have about 10 km left to go. Another traveler might say the road ahead looks like it’s about 15 km long. If you both measured the road, however, you would agree. Traveling at everyday speeds, the distance you both measure would be the same. You will read in this section, however, that this is not true at relativistic speeds. Close to the speed of light, distances measured are not the same when measured by different observers.

Proper length

One thing all observers agree upon is relative speed. Even though clocks measure different elapsed times for the same process, they still agree that relative speed, which is distance divided by elapsed time, is the same. This implies that distance, too, depends on the observer’s relative motion. If two observers see different times, then they must also see different distances for relative speed to be the same to each of them.

The muon discussed in [link] illustrates this concept. To an observer on the Earth, the muon travels at 0.950 c size 12{c} {} for 7.05 μ s size 12{c} {} from the time it is produced until it decays. Thus it travels a distance

L 0 = v Δ t = ( 0.950 ) ( 3.00 × 10 8 m/s ) ( 7.05 × 10 6 s ) = 2.01 km

relative to the Earth. In the muon’s frame of reference, its lifetime is only 2.20 μ s . It has enough time to travel only

L = v Δ t 0 = ( 0 . 950 ) ( 3 . 00 × 10 8 m/s ) ( 2 . 20 × 10 6 s ) = 0 .627 km .

The distance between the same two events (production and decay of a muon) depends on who measures it and how they are moving relative to it.

Proper length

Proper length L 0 size 12{L rSub { size 8{0} } } {} is the distance between two points measured by an observer who is at rest relative to both of the points.

The Earth-bound observer measures the proper length L 0 size 12{L rSub { size 8{0} } } {} , because the points at which the muon is produced and decays are stationary relative to the Earth. To the muon, the Earth, air, and clouds are moving, and so the distance L size 12{L} {} it sees is not the proper length.

In part a observer observes from ground frame of reference a muon above earth with speed v in the rightward direction. The distance between the muon and the place where it disintegrates is two point zero one. In part b the system is shown in motion having velocity v in the leftward direction. So, the cloud and ground are displaced zero point six two seven kilo meter in the opposite direction.
(a) The Earth-bound observer sees the muon travel 2.01 km between clouds. (b) The muon sees itself travel the same path, but only a distance of 0.627 km. The Earth, air, and clouds are moving relative to the muon in its frame, and all appear to have smaller lengths along the direction of travel.

Length contraction

To develop an equation relating distances measured by different observers, we note that the velocity relative to the Earth-bound observer in our muon example is given by

v = L 0 Δ t . size 12{v= { {L rSub { size 8{0} } } over {Δt} } } {}

The time relative to the Earth-bound observer is Δ t size 12{Δt} {} , since the object being timed is moving relative to this observer. The velocity relative to the moving observer is given by

v = L Δ t 0 . size 12{v= { {L rSub { size 8{0} } } over {Δt} } } {}

The moving observer travels with the muon and therefore observes the proper time Δ t 0 size 12{Δt rSub { size 8{0} } } {} . The two velocities are identical; thus,

L 0 Δ t = L Δ t 0 . size 12{ { {L rSub { size 8{0} } } over {Δt} } = { {L} over {Δt rSub { size 8{0} } } } } {}

We know that Δ t = γ Δ t 0 size 12{Δt=γΔt rSub { size 8{0} } } {} . Substituting this equation into the relationship above gives

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask