<< Chapter < Page Chapter >> Page >

A rocket’s acceleration depends on three major factors, consistent with the equation for acceleration of a rocket . First, the greater the exhaust velocity of the gases relative to the rocket, v e size 12{v rSub { size 8{e} } } {} , the greater the acceleration is. The practical limit for v e size 12{v rSub { size 8{e} } } {} is about 2 . 5 × 10 3 m/s size 12{2 "." 5 times "10" rSup { size 8{3} } `"m/s"} {} for conventional (non-nuclear) hot-gas propulsion systems. The second factor is the rate at which mass is ejected from the rocket. This is the factor Δ m / Δ t size 12{Δm/Δt} {} in the equation. The quantity ( Δ m / Δ t ) v e size 12{ \( Δm/Δt \) v rSub { size 8{e} } } {} , with units of newtons, is called "thrust.” The faster the rocket burns its fuel, the greater its thrust, and the greater its acceleration. The third factor is the mass m size 12{m} {} of the rocket. The smaller the mass is (all other factors being the same), the greater the acceleration. The rocket mass m size 12{m} {} decreases dramatically during flight because most of the rocket is fuel to begin with, so that acceleration increases continuously, reaching a maximum just before the fuel is exhausted.

Factors affecting a rocket’s acceleration

  • The greater the exhaust velocity v e size 12{v rSub { size 8{e} } } {} of the gases relative to the rocket, the greater the acceleration.
  • The faster the rocket burns its fuel, the greater its acceleration.
  • The smaller the rocket’s mass (all other factors being the same), the greater the acceleration.

Calculating acceleration: initial acceleration of a moon launch

A Saturn V’s mass at liftoff was 2 . 80 × 10 6 kg size 12{2 "." "80" times "10" rSup { size 8{6} } `"kg"} {} , its fuel-burn rate was 1 . 40 × 10 4 kg/s size 12{1 "." "40" times "10" rSup { size 8{4} } `"kg/s"} {} , and the exhaust velocity was 2 . 40 × 10 3 m/s size 12{2 "." "40" times "10" rSup { size 8{3} } `"m/s"} {} . Calculate its initial acceleration.

Strategy

This problem is a straightforward application of the expression for acceleration because a size 12{a} {} is the unknown and all of the terms on the right side of the equation are given.

Solution

Substituting the given values into the equation for acceleration yields

a = v e m Δ m Δ t g = 2 . 40 × 10 3 m/s 2 . 80 × 10 6 kg 1 . 40 × 10 4 kg/s 9 . 80 m/s 2 = 2 . 20 m/s 2 .

Discussion

This value is fairly small, even for an initial acceleration. The acceleration does increase steadily as the rocket burns fuel, because m size 12{m} {} decreases while v e size 12{v rSub { size 8{e} } } {} and Δ m Δ t size 12{ { {Δm} over {Δt} } } {} remain constant. Knowing this acceleration and the mass of the rocket, you can show that the thrust of the engines was 3 . 36 × 10 7 N size 12{3 "." "36" times "10" rSup { size 8{7} } `N} {} .

Got questions? Get instant answers now!

To achieve the high speeds needed to hop continents, obtain orbit, or escape Earth’s gravity altogether, the mass of the rocket other than fuel must be as small as possible. It can be shown that, in the absence of air resistance and neglecting gravity, the final velocity of a one-stage rocket initially at rest is

v = v e ln m 0 m r , size 12{v=v rSub { size 8{e} } "ln" { {m rSub { size 8{0} } } over {m rSub { size 8{r} } } } ,} {}

where ln m 0 / m r size 12{"ln"` left (m rSub { size 8{0} } /m rSub { size 8{r} } right )} {} is the natural logarithm of the ratio of the initial mass of the rocket m 0 size 12{ left (m rSub { size 8{0} } right )} {} to what is left m r size 12{ left (m rSub { size 8{r} } right )} {} after all of the fuel is exhausted. (Note that v size 12{v} {} is actually the change in velocity, so the equation can be used for any segment of the flight. If we start from rest, the change in velocity equals the final velocity.) For example, let us calculate the mass ratio needed to escape Earth’s gravity starting from rest, given that the escape velocity from Earth is about 11 . 2 × 10 3 m/s size 12{"11" "." 2 times "10" rSup { size 8{3} } `"m/s"} {} , and assuming an exhaust velocity v e = 2 . 5 × 10 3 m/s size 12{v rSub { size 8{e} } =2 "." 5 times "10" rSup { size 8{3} } `"m/s"} {} .

ln m 0 m r = v v e = 11 . 2 × 10 3 m/s 2 . 5 × 10 3 m/s = 4 . 48 size 12{"ln" { {m rSub { size 8{0} } } over {m rSub { size 8{r} } } } = { {v} over {v rSub { size 8{e} } } } = { {"11" "." 2 times "10" rSup { size 8{3} } `"m/s"} over {2 "." 5 times "10" rSup { size 8{3} } `"m/s"} } =4 "." "48"} {}

Solving for m 0 / m r size 12{m rSub { size 8{0} } /m rSub { size 8{r} } } {} gives

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask