<< Chapter < Page Chapter >> Page >
  • Describe an elastic collision of two objects in one dimension.
  • Define internal kinetic energy.
  • Derive an expression for conservation of internal kinetic energy in a one dimensional collision.
  • Determine the final velocities in an elastic collision given masses and initial velocities.

Let us consider various types of two-object collisions. These collisions are the easiest to analyze, and they illustrate many of the physical principles involved in collisions. The conservation of momentum principle is very useful here, and it can be used whenever the net external force on a system is zero.

We start with the elastic collision of two objects moving along the same line—a one-dimensional problem. An elastic collision    is one that also conserves internal kinetic energy. Internal kinetic energy is the sum of the kinetic energies of the objects in the system. [link] illustrates an elastic collision in which internal kinetic energy and momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions can be very nearly, but not quite, elastic—some kinetic energy is always converted into other forms of energy such as heat transfer due to friction and sound. One macroscopic collision that is nearly elastic is that of two steel blocks on ice. Another nearly elastic collision is that between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly frictionless, more readily allowing nearly elastic collisions on them.

Elastic collision

An elastic collision    is one that conserves internal kinetic energy.

Internal kinetic energy

Internal kinetic energy is the sum of the kinetic energies of the objects in the system.

The system of interest contains a smaller mass m sub1 and a larger mass m sub2 moving on a frictionless surface. M sub 2 moves with velocity V sub 2 and momentum p sub 2 and m sub 1 moves behind m sub 2, with velocity V sub 1 and momentum p sub 1 toward the right direction. P 1 plus P 2 equals p total. The net force is zero. After collision m sub 1 moves toward the left with velocity V sub 1 while m sub 2 moves toward the right with velocity V sub 2 on the same frictionless surface. The momentum of m sub 1 becomes p 1 prime and m 2 becomes p 2 prime now. P 1 prime plus p 2 prime equals p total.
An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.

Now, to solve problems involving one-dimensional elastic collisions between two objects we can use the equations for conservation of momentum and conservation of internal kinetic energy. First, the equation for conservation of momentum for two objects in a one-dimensional collision is

p 1 + p 2 = p 1 + p 2 F net = 0 size 12{ left (F rSub { size 8{"net"} } =0 right )} {}

or

m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 F net = 0 , size 12{ left (F rSub { size 8{"net"} } =0 right )} {}

where the primes (') indicate values after the collision. By definition, an elastic collision conserves internal kinetic energy, and so the sum of kinetic energies before the collision equals the sum after the collision. Thus,

1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 (two-object elastic collision)

expresses the equation for conservation of internal kinetic energy in a one-dimensional collision.

Calculating velocities following an elastic collision

Calculate the velocities of two objects following an elastic collision, given that

m 1 = 0 . 500 kg, m 2 = 3 . 50 kg, v 1 = 4 . 00 m/s, and v 2 = 0 . size 12{m rSub { size 8{1} } =0 "." "500"" kg, "m rSub { size 8{2} } =3 "." "50"" kg, "v rSub { size 8{1} } =4 "." "00"" m/s, and "v rSub { size 8{2} } =0 "." } {}

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is slightly simpler than the situation shown in [link] where both objects are initially moving. We are asked to find two unknowns (the final velocities v 1 and v 2 size 12{v rSub { size 8{2} } '} {} ). To find two unknowns, we must use two independent equations. Because this collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and thus v 2 = 0 size 12{v rSub { size 8{2} } =0} {} . Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask