<< Chapter < Page Chapter >> Page >
  • Calculate coefficient of friction on a car tire.
  • Calculate ideal speed and angle of a car on a turn.

Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope on a tether ball, the force of Earth’s gravity on the Moon, friction between roller skates and a rink floor, a banked roadway’s force on a car, and forces on the tube of a spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force    . The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration. According to Newton’s second law of motion, net force is mass times acceleration: net F = ma size 12{F= ital "ma"} {} . For uniform circular motion, the acceleration is the centripetal acceleration— a = a c size 12{a=a rSub { size 8{c} } } {} . Thus, the magnitude of centripetal force F c size 12{F rSub { size 8{c} } } {} is

F c = m a c . size 12{F rSub { size 8{c} } =ma rSub { size 8{c} } } {}

By using the expressions for centripetal acceleration a c size 12{a rSub { size 8{c} } } {} from a c = v 2 r ; a c = 2 size 12{a rSub { size 8{c} } = { {v rSup { size 8{2} } } over {r} } ;``a rSub { size 8{c} } =rω rSup { size 8{2} } } {} , we get two expressions for the centripetal force F c size 12{F rSub { size 8{c} } } {} in terms of mass, velocity, angular velocity, and radius of curvature:

F c = m v 2 r ; F c = mr ω 2 . size 12{F rSub { size 8{c} } =m { {v rSup { size 8{2} } } over {r} } ;``F rSub { size 8{c} } = ital "mr"ω rSup { size 8{2} } } {}

You may use whichever expression for centripetal force is more convenient. Centripetal force F c size 12{F rSub { size 8{c} } } {} is always perpendicular to the path and pointing to the center of curvature, because a c size 12{a rSub { size 8{c} } } {} is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for r size 12{r} {} , you get

r = mv 2 F c . size 12{r= { { ital "mv" rSup { size 8{2} } } over {F rSub { size 8{c} } } } } {}

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.

The given figure consists of two semicircles, one over the other. The top semicircle is bigger and the one below is smaller. In both the figures, the direction of the path is given along the semicircle in the counter-clockwise direction. A point is shown on the path, where the radius from the circle, r, is shown with an arrow from the center of the circle. At the same point, the centripetal force is shown in the opposite direction to that of radius arrow. The velocity, v, is shown along this point in the left upward direction and is perpendicular to the force. In both the figures, the velocity is same, but the radius is smaller and centripetal force is larger in the lower figure.
The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity and causes uniform circular motion. The larger the F c size 12{F rSub { size 8{c} } } {} , the smaller the radius of curvature r size 12{r} {} and the sharper the curve. The second curve has the same v size 12{v} {} , but a larger F c size 12{F rSub { size 8{c} } } {} produces a smaller r size 12{ { {r}} sup { ' }} {} .

What coefficient of friction do car tires need on a flat curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction being the reason that keeps the car from slipping (see [link] ).

Strategy and Solution for (a)

We know that F c = mv 2 r . Thus,

F c = mv 2 r = ( 900 kg ) ( 25.0 m/s ) 2 ( 500 m ) = 1125 N.

Strategy for (b)

[link] shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We know that the maximum static friction (at which the tires roll but do not slip) is μ s N size 12{μ rSub { size 8{s} } N} {} , where μ s size 12{μ rSub { size 8{s} } } {} is the static coefficient of friction and N is the normal force. The normal force equals the car’s weight on level ground, so that N = mg . Thus the centripetal force in this situation is

F c = f = μ s N = μ s mg . size 12{F rSub { size 8{c} } =f=μ rSub { size 8{s} } N=μ rSub { size 8{s} } ital "mg"} {}

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for F c size 12{F rSub { size 8{c} } } {} from the equation

F c = m v 2 r F c = mr ω 2 } , size 12{ left none matrix { F rSub { size 8{c} } =m { {v rSup { size 8{2} } } over {r} } {} ##F rSub { size 8{c} } = ital "mr"ω rSup { size 8{2} } } right rbrace ,} {}

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask