<< Chapter < Page Chapter >> Page >

What is BE / A size 12{ {"BE"} slash {A} } {} For an alpha particle?

Calculate the binding energy per nucleon of 4 He size 12{"" lSup { size 8{4} } "He"} {} , the α size 12{α} {} particle.

Strategy

To find BE / A , we first find BE using the Equation BE = { [ Zm ( 1 H ) + Nm n ] m ( A X ) } c 2 and then divide by A . This is straightforward once we have looked up the appropriate atomic masses in Appendix A .

Solution

The binding energy for a nucleus is given by the equation

BE = { [ Zm ( 1 H ) + Nm n ] m ( A X ) } c 2 .

For 4 He size 12{"" lSup { size 8{4} } "He"} {} , we have Z = N = 2 size 12{Z=N=2} {} ; thus,

BE = { [ 2 m ( 1 H ) + 2 m n ] m ( 4 He ) } c 2 .

Appendix A gives these masses as m ( 4 He ) = 4.002602 u , m ( 1 H ) = 1.007825 u , and m n = 1.008665 u size 12{m rSub { size 8{n} } =0 "." "008665"`" u"} {} . Thus,

BE = ( 0 . 030378 u ) c 2 . size 12{"BE"= \( 0 "." "030378 u" \) c rSup { size 8{2} } } {}

Noting that 1 u = 931 . 5 MeV/ c 2 size 12{"1u"="931" "." "5 MeV/"c rSup { size 8{2} } } {} , we find

BE = ( 0.030378 ) ( 931 . 5 MeV/ c 2 ) c 2 = 28.3 MeV . size 12{"BE"= \( 0 "." "030378" \) \( "931" "." "5 MeV/"c rSup { size 8{2} } \) c rSup { size 8{2} } ="28" "." 3" MeV"} {}

Since A = 4 size 12{A=4} {} , we see that BE / A size 12{ {"BE"} slash {A} } {} is this number divided by 4, or

BE / A = 7.07 MeV/nucleon . size 12{"BE"/A=7 "." "07"" MeV/nucleon"} {}

Discussion

This is a large binding energy per nucleon compared with those for other low-mass nuclei, which have BE / A 3 MeV/nucleon . This indicates that 4 He is tightly bound compared with its neighbors on the chart of the nuclides. You can see the spike representing this value of BE / A for 4 He on the graph in [link] . This is why 4 He is stable. Since 4 He is tightly bound, it has less mass than other A = 4 nuclei and, therefore, cannot spontaneously decay into them. The large binding energy also helps to explain why some nuclei undergo α decay. Smaller mass in the decay products can mean energy release, and such decays can be spontaneous. Further, it can happen that two protons and two neutrons in a nucleus can randomly find themselves together, experience the exceptionally large nuclear force that binds this combination, and act as a 4 He unit within the nucleus, at least for a while. In some cases, the 4 He escapes, and α decay has then taken place.

Got questions? Get instant answers now!

There is more to be learned from nuclear binding energies. The general trend in BE / A size 12{"BE"/A} {} is fundamental to energy production in stars, and to fusion and fission energy sources on Earth, for example. This is one of the applications of nuclear physics covered in Medical Applications of Nuclear Physics . The abundance of elements on Earth, in stars, and in the universe as a whole is related to the binding energy of nuclei and has implications for the continued expansion of the universe.

Problem-solving strategies

For reaction and binding energies and activity calculations in nuclear physics

  1. Identify exactly what needs to be determined in the problem (identify the unknowns) . This will allow you to decide whether the energy of a decay or nuclear reaction is involved, for example, or whether the problem is primarily concerned with activity (rate of decay).
  2. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
  3. For reaction and binding-energy problems, we use atomic rather than nuclear masses. Since the masses of neutral atoms are used, you must count the number of electrons involved. If these do not balance (such as in β + size 12{β rSup { size 8{+{}} } } {} decay), then an energy adjustment of 0.511 MeV per electron must be made. Also note that atomic masses may not be given in a problem; they can be found in tables.
  4. For problems involving activity, the relationship of activity to half-life, and the number of nuclei given in the equation R = 0.693 N t 1 / 2 size 12{R= { {1 "." "693"N} over {t rSub { size 8{1/2} } } } } {} can be very useful. Owing to the fact that number of nuclei is involved, you will also need to be familiar with moles and Avogadro’s number.
  5. Perform the desired calculation; keep careful track of plus and minus signs as well as powers of 10.
  6. Check the answer to see if it is reasonable: Does it make sense? Compare your results with worked examples and other information in the text. (Heeding the advice in Step 5 will also help you to be certain of your result.) You must understand the problem conceptually to be able to determine whether the numerical result is reasonable.

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask