<< Chapter < Page Chapter >> Page >
  • Calculate relativistic velocity addition.
  • Explain when relativistic velocity addition should be used instead of classical addition of velocities.
  • Calculate relativistic Doppler shift.
A man with oar in his hand is kayaking downstream in a shallow fast-flowing river.
The total velocity of a kayak, like this one on the Deerfield River in Massachusetts, is its velocity relative to the water as well as the water’s velocity relative to the riverbank. (credit: abkfenris, Flickr)

If you’ve ever seen a kayak move down a fast-moving river, you know that remaining in the same place would be hard. The river current pulls the kayak along. Pushing the oars back against the water can move the kayak forward in the water, but that only accounts for part of the velocity. The kayak’s motion is an example of classical addition of velocities. In classical physics, velocities add as vectors. The kayak’s velocity is the vector sum of its velocity relative to the water and the water’s velocity relative to the riverbank.

Classical velocity addition

For simplicity, we restrict our consideration of velocity addition to one-dimensional motion. Classically, velocities add like regular numbers in one-dimensional motion. (See [link] .) Suppose, for example, a girl is riding in a sled at a speed 1.0 m/s relative to an observer. She throws a snowball first forward, then backward at a speed of 1.5 m/s relative to the sled. We denote direction with plus and minus signs in one dimension; in this example, forward is positive. Let v size 12{v} {} be the velocity of the sled relative to the Earth, u size 12{u} {} the velocity of the snowball relative to the Earth-bound observer, and u size 12{u rSup { size 8{'} } } {} the velocity of the snowball relative to the sled.

In part a, a man is pulling a sled towards the right with a velocity v equals one point zero meters per second. A girl sitting on the sled facing forward throws a snowball toward a boy on the far right of the picture. The snowball is labeled u primed equals one point five meters per second in the direction the sled is being pulled. The boy is labelled two point five meters per second. In figure b, a similar figure is shown, but the man’s velocity is one point zero meters per second, the girl is facing backward and throwing the snowball behind the sled. The snowball is labelled u primed equals negative one point five meters per second, and the boy is labelled u equals negative zero point five meters per second.
Classically, velocities add like ordinary numbers in one-dimensional motion. Here the girl throws a snowball forward and then backward from a sled. The velocity of the sled relative to the Earth is v= 1 . 0 m/s size 12{ ital "v="1 "." 0`"m/s"} {} . The velocity of the snowball relative to the truck is u size 12{u rSup { size 8{'} } } {} , while its velocity relative to the Earth is u size 12{u} {} . Classically, u=v+u .

Classical velocity addition

u=v+u

Thus, when the girl throws the snowball forward, u = 1.0 m/s + 1.5 m/s = 2.5 m/s . It makes good intuitive sense that the snowball will head towards the Earth-bound observer faster, because it is thrown forward from a moving vehicle. When the girl throws the snowball backward, u = 1.0 m/s + ( 1.5 m/s ) = 0.5 m/s . The minus sign means the snowball moves away from the Earth-bound observer.

Relativistic velocity addition

The second postulate of relativity (verified by extensive experimental observation) says that classical velocity addition does not apply to light. Imagine a car traveling at night along a straight road, as in [link] . If classical velocity addition applied to light, then the light from the car’s headlights would approach the observer on the sidewalk at a speed u=v+c size 12{ ital "u=v+c"} {} . But we know that light will move away from the car at speed c size 12{c} {} relative to the driver of the car, and light will move towards the observer on the sidewalk at speed c size 12{c} {} , too.

A car is moving towards right with velocity v. A boy standing on the side-walk observes the car. The velocity of light u primed is shown to be c as observed by the girl in the car and the velocity of light u is also c as observed by the boy.
According to experiment and the second postulate of relativity, light from the car’s headlights moves away from the car at speed c size 12{c} {} and towards the observer on the sidewalk at speed c size 12{c} {} . Classical velocity addition is not valid.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask