<< Chapter < Page Chapter >> Page >
  • Define diffusion, osmosis, dialysis, and active transport.
  • Calculate diffusion rates.

Diffusion

There is something fishy about the ice cube from your freezer—how did it pick up those food odors? How does soaking a sprained ankle in Epsom salt reduce swelling? The answer to these questions are related to atomic and molecular transport phenomena—another mode of fluid motion. Atoms and molecules are in constant motion at any temperature. In fluids they move about randomly even in the absence of macroscopic flow. This motion is called a random walk and is illustrated in [link] . Diffusion is the movement of substances due to random thermal molecular motion. Fluids, like fish fumes or odors entering ice cubes, can even diffuse through solids.

Diffusion is a slow process over macroscopic distances. The densities of common materials are great enough that molecules cannot travel very far before having a collision that can scatter them in any direction, including straight backward. It can be shown that the average distance x rms size 12{x rSub { size 8{"rms"} } } {} that a molecule travels is proportional to the square root of time:

x rms = 2 Dt , size 12{x rSub { size 8{"rms"} } = sqrt {2 ital "Dt"} } {}

where x rms stands for the root-mean-square distance and is the statistical average for the process. The quantity D size 12{D} {} is the diffusion constant for the particular molecule in a specific medium. [link] lists representative values of D size 12{D} {} for various substances, in units of m 2 /s size 12{m rSup { size 8{2} } "/s"} {} .

The figure shows the path of a random walk. The random thermal motion of a molecule is shown to begin at a start point and then the particles move about zigzag in all directions and end up at the finish point. The distance between the start and finish point is shown as x. Continuous arrows show various directions of motion.
The random thermal motion of a molecule in a fluid in time t size 12{t} {} . This type of motion is called a random walk.
Diffusion constants for various molecules At 20°C and 1 atm
Diffusing molecule Medium D (m 2 /s)
Hydrogen ( H 2 ) Air 6.4 × 10 –5
Oxygen ( O 2 ) Air 1.8 × 10 –5
Oxygen ( O 2 ) Water 1.0 × 10 –9
Glucose ( C 6 H 12 O 6 ) Water 6.7 × 10 –10
Hemoglobin Water 6.9 × 10 –11
DNA Water 1.3 × 10 –12

Note that D size 12{D} {} gets progressively smaller for more massive molecules. This decrease is because the average molecular speed at a given temperature is inversely proportional to molecular mass. Thus the more massive molecules diffuse more slowly. Another interesting point is that D size 12{D} {} for oxygen in air is much greater than D size 12{D} {} for oxygen in water. In water, an oxygen molecule makes many more collisions in its random walk and is slowed considerably. In water, an oxygen molecule moves only about 40 μ m in 1 s. (Each molecule actually collides about 10 10 size 12{"10" rSup { size 8{"10"} } } {} times per second!). Finally, note that diffusion constants increase with temperature, because average molecular speed increases with temperature. This is because the average kinetic energy of molecules, 1 2 mv 2 size 12{ { { size 8{1} } over { size 8{2} } } ital "mv" rSup { size 8{2} } } {} , is proportional to absolute temperature.

Calculating diffusion: how long does glucose diffusion take?

Calculate the average time it takes a glucose molecule to move 1.0 cm in water.

Strategy

We can use x rms = 2 D t size 12{x rSub { size 8{"rms"} } = sqrt {2 ital "Dt"} } {} , the expression for the average distance moved in time t size 12{t} {} , and solve it for t size 12{t} {} . All other quantities are known.

Solution

Solving for t size 12{t} {} and substituting known values yields

t = x rms 2 2 D = ( 0.010 m ) 2 2 ( 6 . 7 × 10 10 m 2 /s ) = 7 . 5 × 10 4 s = 21 h .

Discussion

This is a remarkably long time for glucose to move a mere centimeter! For this reason, we stir sugar into water rather than waiting for it to diffuse.

Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask