<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the projectile motion. The questions are categorized in terms of the characterizing features of the subject matter :

  • Direction of motion on return
  • Maximum height
  • Equation of projectile motion
  • Change in angles during motion
  • Kinetic energy of a projectile
  • Change in the direction of velocity vector

Direction of motion on return

Problem : A projectile is thrown with a speed of 15 m/s making an angle 60° with horizontal. Find the acute angle, "α", that it makes with the vertical at the time of its return on the ground (consider g = 10 m / s 2 ).

Solution : The vertical component of velocity of the projectile at the return on the ground is equal in magnitude, but opposite in direction. On the other hand, horizontal component of velocity remains unaltered. The figure, here, shows the acute angle that the velocity vector makes with vertical.

Projectile motion

The trajectory is symmetric about the vertical line passing through point of maximum height. From the figure, the acute angle with vertical is :

α = 90 0 - θ = 90 0 - 60 0 = 30 0

Got questions? Get instant answers now!

Maximum height

Problem : Motion of a projectile is described in a coordinate system, where horizontal and vertical directions of the projectile correspond to x and y axes. The velocity of the projectile is 12 i + 20 j m/s at an elevation of 15 m from the point of projection. Find the maximum height attained by the projectile (consider g = 10 m / s 2 ).

Solution : Here, the vertical component of the velocity (20 m/s) is positive. It means that it is directed in positive y-direction and that the projectile is still ascending to reach the maximum height. The time to reach the maximum height is obtained using equation of motion in vertical direction :

v y = u y - g t

0 = 20 - 10 t t = 2 s

Now, the particle shall rise to a vertical displacement given by :

y = u y t - 1 2 g t 2 = 20 x 2 - 5 x 2 2 = 20 m

The maximum height, as measured from the ground, is :

H = 15 + 20 = 35 m

Got questions? Get instant answers now!

Equation of projectile motion

Problem : The equation of a projectile is given as :

y = 3 x - 1 2 g x 2

Then, find the speed of the projection.

Solution : The general equation of projectile is :

y = x tan θ - g x 2 2 u 2 cos 2 θ

On the other hand, the given equation is :

y = 3 x - 1 2 g x 2

Comparing two equations, we have :

tan θ = 3 θ = 60 0

Also,

u 2 cos 2 θ = 1 u 2 = 1 cos 2 θ u 2 = 1 cos 2 60 = 4 u = 2 m / s

Got questions? Get instant answers now!

Change in angles during motion

Problem : A projectile is projected at an angle 60° from the horizontal with a speed of ( 3 + 1 ) m/s. The time (in seconds) after which the inclination of the projectile with horizontal becomes 45° is :

Solution : Let "u" and "v" be the speed at the two specified angles. The initial components of velocities in horizontal and vertical directions are :

u x = u cos 60 0 u y = u sin 60 0

Projectile motion

Similarly, the components of velocities, when projectile makes an angle 45 with horizontal, in horizontal and vertical directions are :

v x = v cos 45 0 v y = v sin 45 0

But, we know that horizontal component of velocity remains unaltered during motion. Hence,

v x = u x v cos 45 0 = u cos 60 0 v = u cos 60 0 cos 45 0

Here, we know initial and final velocities in vertical direction. We can apply v = u +at in vertical direction to know the time as required :

v sin 45 0 = u + a t = u sin 60 0 - g t v cos 45 0 = u cos 60 0 t = u sin 60 0 - v sin 45 0 g

Substituting value of "v" in the equation, we have :

t = u sin 60 0 - u ( cos 60 0 cos 45 0 ) X sin 45 0 g t = u g ( sin 60 0 - cos 60 0 ) t = ( 3 + 1 ) 10 { ( 3 - 1 ) 2 ) t = 2 20 = 0.1 s

Got questions? Get instant answers now!

Kinetic energy of a projectile

Problem : A projectile is thrown with an angle θ from the horizontal with a kinetic energy of K Joule. Find the kinetic energy of the projectile (in Joule), when it reaches maximum height.

Solution : At the time of projection, the kinetic energy is given by :

K = 1 2 m u 2

At the maximum height, vertical component of the velocity is zero. On the other hand, horizontal component of the velocity of the particle does not change. Thus, the speed of the particle, at the maximum height, is equal to the magnitude of the horizontal component of velocity. Hence, speed of the projectile at maximum height is :

v = u cos θ

The kinetic energy at the maximum height, therefore, is :

K = 1 2 m ( u cos θ ) 2

Substituting value of "u" from the expression of initial kinetic energy is :

K = m x 2 x K 2 m cos 2 θ K = K cos 2 θ

Got questions? Get instant answers now!

Change in the direction of velocity vector

Problem : A projectile with a speed of “u” is thrown at an angle of “θ” with the horizontal. Find the speed (in m/s) of the projectile, when it is perpendicular to the direction of projection.

Solution : We need to visualize the direction of the projectile, when its direction is perpendicular to the direction of projection. Further, we may look to determine the direction of velocity in that situation.

The figure, here, shows the direction of velocity for the condition, when the direction of projectile is perpendicular to the direction of projection. From ΔOAB,

Projectile motion

∠OBA = 180 0 - ( 90 0 + θ ) = 90 0 - θ

Thus, the acute angle between projectile and horizontal direction is 90- θ for the given condition. Now, in order to determine the speed, we use the fact that horizontal component of velocity does not change.

v cos ( 90 0 - θ ) = u cos θ v sin θ = u cos θ v = u cot θ

Got questions? Get instant answers now!

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask