<< Chapter < Page Chapter >> Page >

c 2 = ( a + b ) . ( a + b ) = a . a + 2 a . b + b . b c 2 = a 2 + 2 a b cos θ + b 2 c 2 = a 2 + 2 a b cos ( π-φ ) + b 2 c 2 = a 2 - 2 a b cos φ + b 2

This is known as cosine law of triangle. Curiously, we may pay attention to first two equations above. As a matter of fact, second equation gives the square of the magnitude of resultant of two vectors a and b .

Differentiation and dot product

Differentiation of a vector expression yields a vector. Consider a vector expression given as :

a = ( x 2 + 2 x + 3 ) i

The derivative of the vector with respect to x is :

a ' = ( 2 x + 2 ) i

As the derivative is a vector, two vector expressions with dot product is differentiated in a manner so that dot product is retained in the final expression of derivative. For example,

d d x ( a . b ) = a ' b + a b '

Exercises

Sum and difference of two vectors a and b are perpendicular to each other. Find the relation between two vectors.

The sum a + b and difference a - b are perpendicular to each other. Hence, their dot product should evaluate to zero.

Sum and difference of two vectors

Sum and difference of two vectors are perpendicular to each other.

( a + b ) . ( a - b ) = 0

Using distributive property,

a . a - a . b + b . a - b . b = 0

Using commutative property, a.b = b.a , Hence,

a . a - b . b = 0 a 2 - b 2 = 0 a = b

It means that magnitudes of two vectors are equal. See figure below for enclosed angle between vectors, when vectors are equal :

Sum and difference of two vectors

Sum and difference of two vectors are perpendicular to each other, when vectors are equal.

Got questions? Get instant answers now!

If | a + b | = | a b |, then find the angle between vectors a and b .

A question that involves modulus or magnitude of vector can be handled in specific manner to find information about the vector (s). The specific identity that is used in this circumstance is :

A . A = A 2

We use this identity first with the sum of the vectors ( a + b ),

( a + b ) . ( a + b ) = | a + b | 2

Using distributive property,

a . a + b . a + a . b + b . b = a 2 + b 2 + 2 a b cos θ = | a + b | 2 | a + b | 2 = a 2 + b 2 + 2 a b cos θ

Similarly, using the identity with difference of the vectors (a-b),

| a - b | 2 = a 2 + b 2 - 2 a b cos θ

It is, however, given that :

| a + b | = | a - b |

Squaring on either side of the equation,

| a + b | 2 = | a - b | 2

Putting the expressions,

a 2 + b 2 + 2 a b cos θ = a 2 + b 2 - 2 a b cos θ 4 a b cos θ = 0 cos θ = 0 θ = 90 °

Note : We can have a mental picture of the significance of this result. As given, the magnitude of sum of two vectors is equal to the magnitude of difference of two vectors. Now, we know that difference of vectors is similar to vector sum with one exception that one of the operand is rendered negative. Graphically, it means that one of the vectors is reversed.

Reversing one of the vectors changes the included angle between two vectors, but do not change the magnitudes of either vector. It is, therefore, only the included angle between the vectors that might change the magnitude of resultant. In order that magnitude of resultant does not change even after reversing direction of one of the vectors, it is required that the included angle between the vectors is not changed. This is only possible, when included angle between vectors is 90°. See figure.

Sum and difference of two vectors

Magnitudes of Sum and difference of two vectors are same when vectors at right angle to each other.

Got questions? Get instant answers now!

If a and b are two non-collinear unit vectors and | a + b | = √3, then find the value of expression :

( a - b ) . ( 2 a + b )

The given expression is scalar product of two vector sums. Using distributive property we can expand the expression, which will comprise of scalar product of two vectors a and b .

( a - b ) . ( 2 a + b ) = 2 a . a + a . b - b . 2 a + ( - b ) . ( - b ) = 2 a 2 - a . b - b 2

( a - b ) . ( 2 a + b ) = 2 a 2 - b 2 - a b cos θ

We can evaluate this scalar product, if we know the angle between them as magnitudes of unit vectors are each 1. In order to find the angle between the vectors, we use the identity,

A . A = A 2

Now,

| a + b | 2 = ( a + b ) . ( a + b ) = a 2 + b 2 + 2 a b cos θ = 1 + 1 + 2 x 1 x 1 x cos θ

| a + b | 2 = 2 + 2 cos θ

It is given that :

| a + b | 2 = ( 3 ) 2 = 3

Putting this value,

2 cos θ = | a + b | 2 - 2 = 3 - 2 = 1

cos θ = 1 2 θ = 60 °

Using this value, we now proceed to find the value of given identity,

( a - b ) . ( 2 a + b ) = 2 a 2 - b 2 - a b cos θ = 2 x 1 2 - 1 2 - 1 x 1 x cos 60 °

( a - b ) . ( 2 a + b ) = 1 2

Got questions? Get instant answers now!

In an experiment of light reflection, if a , b and c are the unit vectors in the direction of incident ray, reflected ray and normal to the reflecting surface, then prove that :

b = a - 2 ( a . c ) c

Let us consider vectors in a coordinate system in which “x” and “y” axes of the coordinate system are in the direction of reflecting surface and normal to the reflecting surface respectively as shown in the figure.

Reflection

Angle of incidence is equal to angle of reflection.

We express unit vectors with respect to the incident and reflected as :

a = sin θ i - cos θ j b = sin θ i + cos θ j

Subtracting first equation from the second equation, we have :

b - a = 2 cos θ j b = a + 2 cos θ j

Now, we evaluate dot product, involving unit vectors :

a . c = 1 x 1 x cos ( 180 ° - θ ) = - cos θ

Substituting for cosθ, we have :

b = a - 2 ( a . c ) c

Got questions? Get instant answers now!

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask