<< Chapter < Page Chapter >> Page >

Gravitational potential energy

Third particle is brought in the gravitation of first and second particles.

U 13 = G m 1 m 3 r 13

Similarly, the potential energy due to second particle is equal to the negative of work by gravitational force due to it :

U 23 = G m 2 m 3 r 23

Thus, potential energy of three particles at given positions is algebraic sum of negative of gravitational work in (i) bringing first particle (ii) bringing second particle in the presence of first particle and (iii) bringing third particle in the presence of first two particles :

U = G m 1 m 2 r 12 + m 1 m 3 r 13 + m 2 m 3 r 23

Induction of forth particle in the system will involve work by gravitation in assembling three particles as given by the above expression plus works by the individual gravitation of three already assembled particles when fourth particle is brought from the infinity.

U = G m 1 m 2 r 12 + m 1 m 3 r 13 + m 2 m 3 r 23 + m 1 m 4 r 14 + m 2 m 4 r 24 + m 3 m 4 r 34

Proceeding in this fashion, we can calculate potential energy of a system of particles. We see here that this process resembles the manner in which a system of particles like a rigid body is constituted bit by bit. As such, this potential energy of the system represents the “energy of constitution” and is called “self energy” of the rigid body or system of particles. We shall develop alternative technique (easier) to measure potential energy and hence “self energy” of regular geometric shapes with the concept of gravitational potential in a separate module.

Examples

Problem 1: Find the work done in bringing three particles, each having a mass of 0.1 kg from large distance to the vertices of an equilateral triangle of 10 cm in a gravity free region. Assume that no change of kinetic energy is involved in bringing particles.

Solution : We note here that all three particles have same mass. Hence, product of mass in the expression of gravitational potential energy reduces to square of mass. The gravitational potential energy of three particles at the vertices of the equilateral triangle is :

U = - 3 G m 2 a

where “a” is the side of the equilateral triangle.

Putting values,

U = 3 X 6.67 X 10 - 11 X 0.12 0.1 = - 3 X 6.67 X 10 - 10 X 0.01 = - 20 X 10 - 12 J

U = - 2 X 10 - 11 J

Hence, work done by external force in bringing three particles from large distance is :

W = U = - 2 X 10 - 11 J

Work and energy

An external force working on a system brings about changes in the energy of system. If change in energy is limited to mechanical energy, then work by external force will be related to change in mechanical energy as :

W F = Δ E = Δ U + Δ K

A change in gravitational potential energy may or may not be accompanied with change in kinetic energy. It depends on the manner external force works on the system. If we work on the system in such a manner that we do not impart kinetic energy to the particles of the system, then there is no change in kinetic energy. In that case, the work by external force is equal to the change in gravitational potential energy alone.

There can be three different situations :

Case 1 : If there is change in kinetic energy, then work by external force is equal to the change in potential and kinetic energy:

W F = Δ U + Δ K

Case 2 : If there is no change in kinetic energy, then work by external force is equal to the change in potential energy alone :

Δ K = 0

Putting in the expression of work,

W F = Δ U

Case 3 : If there is no external force, then work by external force is zero. The change in one form of mechanical energy is compensated by a corresponding negative change in the other form. This means that mechanical energy of the system is conserved. Here,

W F = 0

Putting in the expression of work,

Δ U + Δ K = 0

We shall, now, work with two illustrations corresponding to following situations :

  • Change in potential energy without change in kinetic energy
  • Change in potential energy without external force

Change in potential energy without change in kinetic energy

Problem 2: Three particles, each having a mass of 0.1 kg are placed at the vertices of an equilateral triangle of 10 cm. Find the work done to change the positions of particles such that side of the triangle is 20 cm. Assume that no change of kinetic energy is involved in changing positions.

Solution : The work done to bring the particles together by external force in gravitational field is equal to potential energy of the system of particles. This means that work done in changing the positions of the particles is equal to change in potential energy due to change in the positions of particles. For work by external force,

W F = Δ U + Δ K

Here, ΔK = 0

W F = Δ U

Now, we have seen that :

U = - 3 G m 2 a

Hence, change in gravitational potential energy is :

Δ U = 3 G m 2 a 2 3 G m 2 a 1

Δ U = 3 G m 2 [ - 1 a 2 + 1 a 1 ]

Putting values, we have : Δ U = 3 X 6.67 X 10 - 11 X 0.1 2 [ - 1 0.2 + 1 0.1 ]

Δ U = 3 X 6.67 X 10 - 11 X 0.12 X 5

Δ U = 1.00 X 10 - 11 J

Change in potential energy without external force

Problem 3: Three identical solid spheres each of mass “m” and radius “R” are released from positions as shown in the figure (assume no external gravitation). What would be the speed of any of three spheres just before they collide.

Three particles system

Positions before being released.

Solution : Since no external force is involved, the mechanical energy of the system at the time of release should be equal to mechanical energy just before the collision. In other words, the mechanical energy of the system is conserved. The initial potential energy of system is given by,

U i = - 3 G m 2 a

Let “v” be the speed of any sphere before collision. The configuration just before the collision is shown in the figure. We can see that linear distance between any two centers of two identical spheres is “2R”. Hence, potential energy of the configuration before collision is,

Three particles system

Positions just before collision.

U f = - 3 G m 2 2 R

Applying conservation of mechanical energy,

K i + U i = K f + U f

0 - 3 G m 2 a = 1 2 m v 2 3 G m 2 2 R

v = { G m 1 R 2 a }

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask