<< Chapter < Page Chapter >> Page >
Each part of a rigid body under pure rotational motion describes a circular motion about a fixed axis.

In pure rotational motion, the constituent particles of a rigid body rotate about a fixed axis in a circular trajectory. The particles, composing the rigid body, are always at a constant perpendicular distance from the axis of rotation as their internal distances within the rigid body is locked. Farther the particle from the axis of rotation, greater is the speed of rotation of the particle. Clearly, rotation of a rigid body comprises of circular motion of individual particles.

Rotation of a rigid body about a fixed axis

Each particle constituting the body executes an uniform circular motion about the fixed axis.

We shall study these and other details about the rotational motion of rigid bodies at a later stage. For now, we confine ourselves to the aspects of rotational motion, which are connected to the circular motion as executed by a particle. In this background, we can say that uniform circular motion (UCM) represents the basic form of circular motion and circular motion, in turn, constitutes rotational motion of a rigid body.

The description of a circular and hence that of rotational motion is best suited to corresponding angular quantities as against linear quantities that we have so far used to describe translational motion. In this module, we shall introduce these angular quantities and prepare the ground work to enable us apply the concepts of angular quantities to “circular motion” in general and “uniform circulation motion” in particular.

Most important aspect of angular description as against linear description is that there exists one to one correspondence of quantities describing motion : angular displacement (linear displacement), angular velocity (linear velocity) and angular acceleration (linear acceleration).

Angular quantities

In this section, we discuss some of the defining quantities, which are used to study uniform circular motion of a particle and rotational motion of rigid bodies. These quantities are angular position, angular displacement and angular velocity. They possess directional properties. Their measurement in counter clockwise direction is considered positive, whereas quantities measured in clockwise direction is considered negative. This gives us a simplified scheme to represent an angular vector by a simple variable, whose sign indicates its direction.

Notably, we shall not discuss angular acceleration in this module. It will be discussed as a part of non-uniform circular motion in a separate module.

Angular position (θ)

We need two straight lines to measure an angle. In rotational motion, one of them represents fixed direction, while another represents the rotating arm containing the particle. Both these lines are perpendicular to the rotating axis. The rotating arm, additionally, passes through the position of the particle.

Angular position (θ)

Angular position is the angle between reference direction and rotating arm.

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask