<< Chapter < Page Chapter >> Page >

Motion in accelerated frame

F = m a A

We, now, seek to analyze the motion with respect to a frame of reference, which is moving with acceleration, ” a B ” with respect to ground reference. Let the acceleration of the body with respect to this accelerated frame be “ a AB ” .

Motion in accelerated frame

The product of the mass and the acceleration of the body with respect to accelerated reference is given by :

F = m a A B

This product is not equal to the product as obtained in inertial ground frame. This is because, acceleration of the body with respect to accelerated reference “ a AB ” is given as :

Relative acceleration

a A B = a A a B

As such, the product in the accelerated frame evaluates to :

F = m a A B = m a A m a B = F m a B

If Newton’s second law of motion is valid in the accelerated frame, then it should connect external force on the body with the acceleration, “ a AB ”, in the accelerated frame of reference. Clearly, this is not the case. However, if we replace external force “ F ” by “ F - m a B ”, then the modified external force is equal to the product of mass and acceleration of the body in the accelerated frame.

Motion in accelerated frame

F m a B = m a A B

Clearly, we need to apply a force " a a B "maB in the direction opposite to the acceleration of the frame of reference “B”. This force is known or termed as “pseudo” force.

Problem 1 : A pendulum is suspended from the roof of a train compartment, which is moving with a constant acceleration “a”. Find the deflection of the pendulum bob from the vertical as observed from the ground and the compartment.

Solution : We analyze the problem from the perspectives of both inertial and accelerated frames.

(i) In the inertial frame of reference,

Free body diagram of pendulum bob

The bob has acceleration “a” towards right. The forces on the bob are (i) weight of the bob, mg, and (ii) tension in the string.

Free body diagram (inertial frame)

F x = T sin θ = m a x T sin θ = m a

and

F y = T cos θ - m g = 0 T cos θ = m g

Combining two equations, we have :

tan θ = a g θ = tan - 1 ( a g )

(ii) In the accelerated frame of reference,

Free body diagram of pendulum bob

The bob is at rest. The forces on the bob are (i) weight of the bob, mg, (ii) tension in the string and (iii) pseudo force ma.

Free body diagram (accelerated frame)

F x = T sin θ - m a = 0 T sin θ = m a

and

F y = T cos θ - m g = 0 T cos θ = m g

Combining two equations, we have :

tan θ = a g θ = tan - 1 ( a g )

Alternatives

Application of force analysis in accelerated frame of reference may have two approaches. We can analyze using Newton’s law from an inertial frame of reference. Alternatively, we can use the technique of pseudo force and apply Newton’s law right in the accelerated frame of reference as described above.

There is a school of thought that simply denies merit in pseudo force technique. The argument is that pseudo force technique is arbitrary without any fundamental basis. Further, this is like a short cut that conceals the true interaction of forces with body under examination.

On the other hand, there are complicated situation where inertial frame approach may turn out to be difficult to work with. Consider the illustration depicted in the figure. Here, a wedge is placed on the smooth surface of an accelerated lift. We have to study the motion of the block on the smooth incline surface of the wedge.

Accelerated systems

Multiple accelerations here complicates the situation. The lift is accelerated with respect to ground; wedge is accelerated with respect to lift (as the surface of the lift is smooth) ; and finally block is accelerated with respect to wedge (as wedge surface is also smooth). In this case, it would be difficult to assess or determine attributes of motion by analyzing force in the inertial ground reference. In situation like this, analysis of forces in the non-inertial frame of reference of the lift eliminates one of the accelerations involved.

It must again be emphasized that when we analyze motion with respect inertial frame of reference, then all measurements are done with respect to inertial frame. On the other hand, if we analyze with respect to accelerated frame of reference using concept of pseudo force, then all measurements are done with respect to accelerated frame of reference. For example, if the analysis of force in non-inertial frame yields an acceleration of the block as 5 m / s 2 , then we must know that this is the acceleration of the block with respect to in incline i.e. accelerated frame of reference - not with respect to ground.

It is generally recommended that we should stick to force analysis in the inertial frame of reference, unless situation warrants otherwise.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask