<< Chapter < Page Chapter >> Page >
Equilibrium is the state of constant motion; rest being a special case.

We have already used this term in reference to balanced force system. We used the concept of equilibrium with an implicit understanding that the body has no rotational tendency. In this module, we shall expand the meaning by explicitly considering both translational and rotational aspects of equilibrium.

A body is said to be in equilibrium when net external force and net external torque about any point, acting on the body, are individually equal to zero. Mathematically,

Σ F = 0

Σ τ = 0

These two vector equations together are the requirement of body to be in equilibrium. We must clearly understand that equilibrium conditions presented here only ensure absence of acceleration (translational or rotational) – not rest. Absence of acceleration means that velocities are constant – not essentially zero.

Now, we study translational motion of rigid body with respect to its center of mass, the linear and angular velocities under equilibrium are constants :

v C = constant

ω = constant

We need to analyze equilibrium of a body simultaneously for both translational and rotational equilibrium in terms of conditions as laid down here.

Equilibrium types

We are surrounded by great engineering architectures and mechanical devices, which are at rest in the frame of reference of Earth. A large part of engineering creations are static objects. On the other hand, we also seek equilibrium of moving objects like that of floating ship, airplane cruising at high speed and such other moving mechanical devices. In both cases – static or dynamic, external forces and torques are zero.

An equilibrium in motion is said be “dynamic equilibrium”. Similarly, an equilibrium at rest is said be “static equilibrium”. From this, it is clear that static equilibrium requires additional conditions to be fulfilled.

v C = 0

ω = 0

Equilibrium equations

In general, a body is subjected to sufficiently good numbers of forces. Consider for example, a book placed on a table. This simple arrangement actually is subjected to four normal forces operating at the four corners of the table top in the vertically upward direction and two weights, that of the book and the table, acting vertically downward.

External forces on the body

There are six external forces acting the table top.

If we want to solve for the four unknown normal forces acting on the corners of the table top, we would need to have a minimum of four equations. Clearly, two vector relations available for equilibrium are insufficient to deal with the situation.

We actually need to write two vector equations in component form along each of thee mutually perpendicular directions of a rectangular coordinate system. This gives us a set of six equations, enabling us to solve for the unknowns. We shall, however, see that this improvisation, though, helps us a great deal in analyzing equilibrium, but is not good enough for this particular case of the book and table arrangement. We shall explain this aspect in a separate section at the end of this module. Nevertheless, the component force and torque equations are :

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask