<< Chapter < Page Chapter >> Page >
Solving problems is an essential part of the understanding

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Hints for solving problems

Problems based on projectile motion over an incline are slightly difficult. The analysis is complicated mainly because there are multitudes of approaches available. First there is issue of coordinates, then we might face the conflict to either use derived formula or analyze motion independently in component directions and so on. We also need to handle motion up and down the incline in an appropriate manner. However, solutions get easier if we have the insight into the working with new set of coordinate system and develop ability to assign appropriate values of accelerations, angles and component velocities etc.

Here, we present a simple set of guidelines in a very general way :

1: Analyze motion independently along the selected coordinates. Avoid using derived formula to the extent possible.

2: Make note of information given in the question like angles etc., which might render certain component of velocity zero in certain direction.

3: If range of the projectile is given, we may try the trigonometric ratio of the incline itself to get the answer.

4: If we use coordinate system along incline and in the direction perpendicular to it, then always remember that component motion along both incline and in the direction perpendicular to it are accelerated motions. Ensure that we use appropriate components of acceleration in the equations of motion.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the concept of projectile motion on an incline. The questions are categorized in terms of the characterizing features of the subject matter :

  • Range of the flight
  • Angle of projection
  • Final Speed of the projectile
  • Elastic collision with the incline
  • Projectile motion on double inclines

Range of the flight

Problem : A projectile is thrown with a speed "u" at an angle 60° over an incline of 30°. If the time of flight of the projectile is “T”, then find the range of the flight.

Projectile motion on an incline

The time of flight is “T”.

Solution : We can see here that time of flight is already given. We can find range considering projectile motion in the coordinates of horizontal and vertical axes. The range of the projectile “R” is obtained by using trigonometric ratio in triangle OAB. The range is related to horizontal base “OB” as :

Projectile motion on an incline

The time of flight is “T”.

cos 30 0 = O B O A

R = O A = O B cos 30 0 = O B sec 30 0

Now, we can find OB by considering motion in horizontal direction :

R = O B = u x T = u cos 60 0 T = u T 2

Thus, the range of the projectile, OA, is :

R = O A = u T sec 30 0 2 = u T 3

Got questions? Get instant answers now!

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask