<< Chapter < Page Chapter >> Page >
A rigid body is an aggregation of small elements, which can be treated as point mass.

Gravitational field of rigid bodies

We shall develop few relations here for the gravitational field strength of bodies of particular geometric shape without any reference to Earth’s gravitation.

Newton’s law of gravitation is stated strictly in terms of point mass. The expression of gravitational field due to a particle, as derived from this law, serves as starting point for developing expressions of field strength due to rigid bodies. The derivation for field strength for geometric shapes in this module, therefore, is based on developing technique to treat a real body mass as aggregation of small elements and combine individual effects. There is a bit of visualization required as we need to combine vectors, having directional property.

Along these derivations for gravitational field strength, we shall also establish Newton’s shell theory, which has been the important basic consideration for treating spherical mass as point mass.

The celestial bodies - whose gravitational field is appreciable and whose motions are subject of great interest - are usually spherical. Our prime interest, therefore, is to derive expression for field strength of solid sphere. Conceptually, a solid sphere can be considered being composed of infinite numbers of closely packed spherical shells. In turn, a spherical shell can be conceptualized to be aggregation of thin circular rings of different diameters.

The process of finding the net effect of these elements fits perfectly well with integration process. Our major task, therefore, is to suitably set up an integral expression for elemental mass and then integrate the elemental integral between appropriate limits. It is clear from the discussion here that we need to begin the process in the sequence starting from ring -->spherical shell -->solid sphere.

Gravitational field due to a uniform circular ring

We need to find gravitational field at a point “P” lying on the central axis of the ring of mass “M” and radius “a”. The arrangement is shown in the figure. We consider a small mass “dm” on the circular ring. The gravitational field due to this elemental mass is along PA. Its magnitude is given by :

Gravitational field due to a ring

The gravitational field is measured on axial point "P".

E = G m P A 2 = G m a 2 + r 2

We resolve this gravitational field in the direction parallel and perpendicular to the axis in the plane of OAP.

Gravitational field due to a ring

The net gravitational field is axial.

E | | = E cos θ

E = E sin θ

We note two important things. First, we can see from the figure that measures of “y” and “θ” are same for all elemental mass. Further, we are considering equal elemental masses. Therefore, the magnitude of gravitational field due any of the elements of mass “dm” is same, because they are equidistant from point “P”.

Second, perpendicular components of elemental field intensity for pair of elemental masses on diametrically opposite sides of the ring are oppositely directed. On integration, these perpendicular components will add up to zero for the whole of ring. It is clear that we can assume zero field strength perpendicular to axial line, if mass distribution on the ring is uniform. For uniform ring, the net gravitational intensity will be obtained by integrating axial components of elemental field strength only. Hence,

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask