<< Chapter < Page Chapter >> Page >
Resultant motion follows the principle of independence of motion in mutually perpendicular directions.

The motion of an object body in a medium is composed of two motions : (i) motion of the object and (ii) motion of the medium. The resulting motion as observed by an observer in the reference frame is the resultant of two motions. The basic equation that governs the context of study is the equation of relative motion in two dimensions :

v A B = v A v B

As discussed in the previous module, the motion of the body can alternatively be considered as the resultant of two motions. This concept of resultant motion is essentially an equivalent way of stating the concept of relative motion. Rearranging the equation, we have :

v A = v A B + v B

Both these equations are a vector equations, which can be broadly dealt in two ways (i) analytically (using graphics) and (ii) algebraically (using unit vectors). The use of a particular method depends on the inputs available and the context of motion.

Concept of independence of motion

Analysis of the motion of a body in a medium, specifically, makes use of independence of motions in two perpendicular directions. On a rectilinear coordinate system, the same principle can be stated in terms of component velocities. For example, let us consider the motion of a boat in a river, which tries to reach a point on the opposite bank of the river. The boat sails in the direction perpendicular to the direction of stream. Had the water been still, the boat would have reached the point exactly across the river with a velocity ( v y ). But, water body is not still. It has a velocity in x-direction. The boat, therefore, drifts in the direction of the motion of the water stream ( v x ).

Motion of a boat

Motions in two mutually perpendicular directions are independent of each other.

The important aspect of this motion is that the drift (x) depends on the component of velocity in x-direction. This drift (x) is independent of the component of velocity in y-direction. Why? Simply because, it is an experimental fact, which is fundamental to natural phenomena. We shall expand on this aspect while studying projectile motion also, where motions in vertical and horizontal directions are independent of each other.

In the case of boat, the displacements in the mutually perpendicular coordinate directions are :

x = v x t

y = v y t

Motion of boat in a stream

In this section, we shall consider a general situation of sailing of a boat in a moving stream of water. In order to keep our context simplified, we consider that stream is unidirectional in x-direction and the width of stream, “d”, is constant.

Let the velocities of boat (A) and stream (B) be “ v A “ and “ v B “ respectively with respect to ground. The velocity of boat (A) with respect to stream (B), therefore, is :

v A B = v A v B

v A = v A B + v B

Resultant velocity

The boat moves with the resultant velocity.

These velocities are drawn as shown in the figure. This is clear from the figure that boat sails in the direction, making an angle “θ” with y-direction, but reaches destination in different direction. The boat obviously is carried along in the stream in x-direction. The displacement in x-direction (x = QR) from the directly opposite position to actual position on the other side of the stream is called the drift of the boat.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask