<< Chapter < Page Chapter >> Page >
Conservation of angular momentum of an isolated system is a general and fundamental law.

Conservation of angular momentum is a powerful general law that encapsulates various aspects of motion as a result of internal interactions. The conservation laws, including this one, actually addresses situations of motions, which otherwise can not be dealt easily by direction application of Newton's law of motion. We encounter rotation, in which the rotating body is changing mass distribution and hence moment of inertia. For example, a spring board diver or a skater displays splendid rotational acrobatics by manipulating mass distribution about the axis of rotation. Could we deal such situation easily with Newton's law (in the angular form)? Analysis of motions like these is best suited to the law of conservation of angular momentum.

Conservation of angular momentum is generally believed to be the counterpart of conservation of linear momentum as studied in the case of translation. This perception is essentially flawed. As a matter of fact, this is a generalized law of conservation applicable to all types of motions. We must realize that conservation law of linear momentum is a subset of more general conservation law of angular momentum. Angular quantities are all inclusive of linear and rotational quantities. As such, conservation of angular momentum is also all inclusive. However, this law is regarded to suit situations, which involve rotation. This is the reason that we tend to identify this conservation law with rotational motion.

The domain of application for different conservation laws are different. The conservation law pertaining to linear momentum is broader than force analysis, but limited in scope to translational motions. Conservation of energy, on the other hand, is all inclusive kind of analysis framework as we can write energy conservation for both pure and impure motion types, involving translation and rotation. Theoretically, however, energy conservation is limited at nuclear or sub-atomic level or at high speed translation as mass and energy becomes indistinguishable. These exceptional limits of energy conservation can, however, be overcome simply by substituting energy conservation by an equivalent "mass-energy" conservation law. In this context, conservation of angular momentum is as general as "mass-energy" conservation law to the extent that it is valid at extreme bounds of sub-atomic, nuclear and high speed motions.

What is conserved in the uniform circular motion of a particle?

Uniform circular motion

A particle executing uniform circular motion.

(a) speed of the particle (b) velocity of the particle (c) linear momentum of the particle (d) angular momentum of the particle

The uniform circular motion is characterized by constant speed. Hence, speed is conserved.

The particle continuously changes direction. Hence, velocity is not conserved.

The particle would move along a straight line if there is no external force. However, the particle changes direction. It means that there is an external force on the particle. This force is called centripetal force. As there is an external force on the particle, linear momentum (m v ) is not conserved. We can also simply conclude the same saying that since velocity is not conserved, the linear momentum of the particle (m v ) is not conserved.

The particle has constant angular velocity (ω) and constant moment of inertia (I) about the axis of rotation. Hence, angular momentum (Iω) is conserved. We can look at the situation in yet another way. The only external force involved here is centripetal force, which is radial and passes through the axis of rotation of the particle. Thus, there is no external torque ( τ ) on the particle. As such, angular momentum of the particle is conserved.

Hence, options (a) and (d) are correct.

Got questions? Get instant answers now!

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask