<< Chapter < Page Chapter >> Page >
Moment of inertia of rigid body depends on the distribution of mass about the axis of rotation.

In the module titled Rotation of rigid body , we derived expressions of moments of inertia (MI) for different object forms as :

1. For a particle : I = m r 2

2. For a system of particles : I = m i r i 2

3. For a rigid body : I = r 2 đ m

In this module, we shall evalaute MI of different regularly shaped rigid bodies.

Evaluation strategy

We evaluate right hand integral of the expression of moment of inertia for regularly shaped geometric bodies. The evaluation is basically an integration process, well suited to an axis of rotation for which mass distribution is symmetric. In other words, evaluation of the integral is easy in cases where mass of the body is evenly distributed about the axis. This axis of symmetry passes through "center of mass" of the regular body. Calculation of moment of inertia with respect to other axes is also possible, but then integration process becomes tedious.

There are two very useful theorems that enable us to calculate moment of inertia about certain other relevant axes as well. These theorems pertaining to calculation of moment of inertia with respect to other relevant axes are basically "short cuts" to avoid lengthy integration. We must, however, be aware that these theorems are valid for certain relevant axes only. If we are required to calculate moment of inertia about an axis which can not be addressed by these theorems, then we are left with no choice other than evaluating the integral or determining the same experimentally. As such, we limit ourselves in using integral method to cases, where moment of inertia is required to be calculated about the axis of symmetry.

In this module, we will discuss calculation of moment of inertia using basic integral method only, involving bodies having (i) regular geometric shape (ii) uniform mass distribution i.e uniform density and (iii) axis of rotation passing through center of mass (COM). Application of the theorems shall be discussed in a separate module titled " Theorems on moment of inertia ".

As far as integration method is concerned, it is always useful to have a well planned methodology to complete the evaluation. In general, we complete the integration in following steps :

  1. Identify an infinitesimally small element of the body.
  2. Identify applicable density type (linear, surface or volumetric). Calculate elemental mass "dm" in terms of appropriate density.
  3. Write down the expression of moment of inertia (đI) for elemental mass.
  4. Evaluate the integral of moment of inertia for an appropriate pair of limits and determine moment of inertia of the rigid body.

Identification of small element is crucial in the evaluation of the integral. We consider linear element in evaluating integral for a linear mass distribution as for a rod or a plate. On the other hand, we consider thin concentric ring as the element for a circular plate, because we can think circular plate being composed of infinite numbers of thin concentric rings. Similarly, we consider a spherical body, being composed of closely packed thin spherical shells.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask