<< Chapter < Page Chapter >> Page >
Moment of inertia of rigid body depends on the distribution of mass about the axis of rotation.

In the module titled Rotation of rigid body , we derived expressions of moments of inertia (MI) for different object forms as :

1. For a particle : I = m r 2

2. For a system of particles : I = m i r i 2

3. For a rigid body : I = r 2 đ m

In this module, we shall evalaute MI of different regularly shaped rigid bodies.

Evaluation strategy

We evaluate right hand integral of the expression of moment of inertia for regularly shaped geometric bodies. The evaluation is basically an integration process, well suited to an axis of rotation for which mass distribution is symmetric. In other words, evaluation of the integral is easy in cases where mass of the body is evenly distributed about the axis. This axis of symmetry passes through "center of mass" of the regular body. Calculation of moment of inertia with respect to other axes is also possible, but then integration process becomes tedious.

There are two very useful theorems that enable us to calculate moment of inertia about certain other relevant axes as well. These theorems pertaining to calculation of moment of inertia with respect to other relevant axes are basically "short cuts" to avoid lengthy integration. We must, however, be aware that these theorems are valid for certain relevant axes only. If we are required to calculate moment of inertia about an axis which can not be addressed by these theorems, then we are left with no choice other than evaluating the integral or determining the same experimentally. As such, we limit ourselves in using integral method to cases, where moment of inertia is required to be calculated about the axis of symmetry.

In this module, we will discuss calculation of moment of inertia using basic integral method only, involving bodies having (i) regular geometric shape (ii) uniform mass distribution i.e uniform density and (iii) axis of rotation passing through center of mass (COM). Application of the theorems shall be discussed in a separate module titled " Theorems on moment of inertia ".

As far as integration method is concerned, it is always useful to have a well planned methodology to complete the evaluation. In general, we complete the integration in following steps :

  1. Identify an infinitesimally small element of the body.
  2. Identify applicable density type (linear, surface or volumetric). Calculate elemental mass "dm" in terms of appropriate density.
  3. Write down the expression of moment of inertia (đI) for elemental mass.
  4. Evaluate the integral of moment of inertia for an appropriate pair of limits and determine moment of inertia of the rigid body.

Identification of small element is crucial in the evaluation of the integral. We consider linear element in evaluating integral for a linear mass distribution as for a rod or a plate. On the other hand, we consider thin concentric ring as the element for a circular plate, because we can think circular plate being composed of infinite numbers of thin concentric rings. Similarly, we consider a spherical body, being composed of closely packed thin spherical shells.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask