<< Chapter < Page Chapter >> Page >
The kinetic energy of a particle changes by the amount of work done on it.

Work is itself energy, but plays a specific role with respect to other forms for energy. Its relationship with different energy forms will automatically come to the fore as we investigate them. In this module, we shall investigate the relationship between work and kinetic energy.

To appreciate the connection between work and kinetic energy, let us consider a block, which is moving with a speed "v" in a straight line on a rough horizontal plane. The kinetic friction opposes the motion and eventually brings the block to rest after a displacement say "r".

A block is brought to rest by friction

Friction applies in opposite direction to displacement .

Here, kinetic friction is equal to the product of coefficient of kinetic friction and normal force applied by the horizontal surface on the block,

F k = μ k N = μ k m g

Kinetic friction opposes the motion of the block with deceleration, a, :

a = F k m = μ k m g m = μ k g

Considering motion in x-direction and using equation of motion for deacceleration, v 2 2 = v 1 2 - 2 a r , we have :

0 = v 2 - 2 a r v 2 = 2 a r = 2 μ k g r

Thus, kinetic energy of the block in the beginning of motion is :

K = 1 2 m v 2 = 1 2 x m 2 μ k g r = μ k m g r

A close inspection of the expression of initial kinetic energy as calculated above reveals that the expression is equal to the magnitude of work done by the kinetic friction to bring the block to rest from its initial sate of motion. The magnitude of work done by the kinetic friction is :

W F = F k r = μ k m g r = K

This brings up to a new definition of kinetic energy :

Kinetic energy
Kinetic energy of a particle in motion is equal to the amount of work done by an external force to bring the particle to rest.

Work - kinetic energy theorem

Work - kinetic energy theorem is a generalized description of motion - not specific to any force type like gravity or friction. We shall, here, formally write work - kinetic energy theorem considering an external force. The application of a constant external force results in the change in kinetic energy of the particle. For the time being, we consider a "constant" external force. At the end of this module, we shall extend the concept to variable force as well.

Let v i be the initial speed of the particle, when we start observing motion. Now, the acceleration of the particle is :

A force moves the block on a horizontal surface

Force does work on the block.

a = F m

Let the final velocity of the particle be v f . Then using equation of motion, v f 2 = v i 2 + 2 a r ,

v f 2 - v i 2 = 2 ( F m ) r

Multiplying each term by 1/2 m, we have :

1 2 m v f 2 - 1 2 m v i 2 = 1 2 m x 2 ( F m ) r = F r

K f - K i = W

This is the equation, which is known as work - kinetic energy theorem. In words, change in kinetic energy resulting from application of external force(s) is equal to the work done by the force(s). Equivalently, work done by the force(s) in displacing a particle is equal to change in the kinetic energy of the particle. The above work - kinetic energy equation can be rearranged as :

K f = K i + W

In this form, work - kinetic energy theorem states that kinetic energy changes by the amount of work done on the particle. We know that work can be either positive or negative. Hence, positive work results in an increase of the kinetic energy and negative work results in a decrease of the kinetic energy by the amount of work done on the particle. It is emphasized here for clarity that "work" in the theorem refers to work by "net" force - not individual force.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask